早教吧作业答案频道 -->其他-->
Iff:G->Hisahomomorphism,HisabelianandNisasubgroupofGcontainingKerf,thenNisnormalinG.GTM73里的一道题目,和群论有关1chenlei111222:f不是同构(isomorphism),而是同态(homomorphism)。换句话说它可能不是一
题目详情
If f:G -> H is a homomorphism,H is abelian and N is a subgroup of G containing Ker f,then N is normal in G.
GTM73里的一道题目,和群论有关
1
chenlei111222:
f不是同构(isomorphism),而是同态(homomorphism)。换句话说它可能不是一一的,只是一个群映射产生的对应。这样f(ab)= f(a)f(b)=f(ba)完全推不出ab=ba,所以您的推理是错误的。
您的翻译很准确。
2
524341170,你的回答是在胡说八道
GTM73里的一道题目,和群论有关
1
chenlei111222:
f不是同构(isomorphism),而是同态(homomorphism)。换句话说它可能不是一一的,只是一个群映射产生的对应。这样f(ab)= f(a)f(b)=f(ba)完全推不出ab=ba,所以您的推理是错误的。
您的翻译很准确。
2
524341170,你的回答是在胡说八道
▼优质解答
答案和解析
取N中任意元素n, G中任意元素g, 定义m=g^(-1)ng则
f(m)=f(g^(-1)ng)=f(g^(-1))f(n)f(g)=f(g)^(-1)f(n)f(g)=f(g)^(-1)f(g)f(n)=f(n).
所以
f(mn^(-1))=e
mn^(-1) is in Kerf, and further more in N.
Obviously n^(-1) is in N also.
Thus m is in N.
f(m)=f(g^(-1)ng)=f(g^(-1))f(n)f(g)=f(g)^(-1)f(n)f(g)=f(g)^(-1)f(g)f(n)=f(n).
所以
f(mn^(-1))=e
mn^(-1) is in Kerf, and further more in N.
Obviously n^(-1) is in N also.
Thus m is in N.
看了 Iff:G->Hisahom...的网友还看了以下:
已知可逆反应:M(g)+N(g)===(可逆符号)P(g)+Q(g);△H>0.(为?.已知可逆反 2020-04-27 …
反应速率的变化问题,在线等.求解释急~!(3)H2(g)+I2(g)==(可逆)==2HI(g)( 2020-04-27 …
求教一道微积分导数题目f(x)和g(x)在R上都有定义,且1.f(x+y)=f(x)g(y)+f( 2020-05-17 …
大虾们!一道小小的简单题..对于函数f(x),g(x),其定义域均为a,b对任意X∈[a,b],总 2020-06-06 …
已知f(x+x/1)=x^2+(1/x^2)+3,求f(x)已知f(x/x+1)=x^2+1/x^ 2020-06-07 …
高数求导问题设f(x)和g(x)是在R上定义的函数,且具有如下性质:(1)f(x+y)=f(x)g 2020-06-18 …
问一道化学平衡题将固体NH4I置于密闭容器中,在一定温度下发生下列反应,1.NH4I(s)==(可 2020-07-16 …
函数求导g(x)=1/(1+exp(-x))书上说g(x)的导数g'(x)可以化成g'(x)=2* 2020-07-23 …
第1题A、f(x)是比g(x)高阶的无穷小B、f(x)是比g(x)低阶的无穷小C、f(x)与g(x 2020-07-30 …
同学们看这题目是复合函数的问题吗,怎么这般解法?已知g(x)=1-2x,f[g(x)]=(1-x^2 2020-11-29 …