早教吧作业答案频道 -->数学-->
已知X1+X2+X3……+x40都是正整数,且X1+X2+X3……+X40=58若X12+X22+X32+……+X402的设x1,x2,x3,…,x40是正整数,且x1+x2+x3+…+x40=58,则x12+x22+x32+…+x402的最大值和最小值为()
题目详情
已知X1+X2+X3……+x40都是正整数,且X1+X2+X3……+X40=58若X12+X22+X32+……+X402的
设x1,x2,x3,…,x40是正整数,且x1+x2+x3+…+x40=58,则x12+x22+x32+…+x402的最大值和最小值为( )
设x1,x2,x3,…,x40是正整数,且x1+x2+x3+…+x40=58,则x12+x22+x32+…+x402的最大值和最小值为( )
▼优质解答
答案和解析
把58分写成40个正整数和的写法只有有限种,x12+x22+x32+…+x402的最大值和最小值是存在的.
①设x1≤x2≤…≤x40,由(x1-1)2+(x2+1)2>x12+x22,所以,当x1>1时,把x1调到1,这时,x12+x22+…+x402将增大,所以可以求出最大值.②若存在两数xi,xj,使得xj-xi≥2(1≤i<j≤40),根据(xi+1)2+(xj-1)2=xi2+xj2-2(xi-xj-1)<x12+x22,所以在x1,x2,x3,…,x40中,若两数差大于1,则较小数加1,较大数减1,这时,x12+x22+x32+…+x402将减小,可以求出最小值.
把58分写成40个正整数和的写法只有有限种,x12+x22+…+x402的最大值和最小值是存在的.
不妨设x1≤x2≤…≤x40,若x1>1,则x1+x2=(x1-1)+(x2+1),且
(x1-1)2+(x2+1)2=x12+x22+2(x2-x1)+2>x12+x22
所以,当x1>1时,把x1调到1,这时,x12+x22+x32+…+x402将增大;
同样,可把x2,x3…x39逐步调至1,这时,x12+x22+x32+…+x402将增大,于是,当x1,x2…x39均为1,x40=19时,x12+x22+x32+…+x402将取最大值,即
A=1×39+192=400.
若存在两数xi,xj,使得xj-xi≥2(1≤i<j≤40),则
(xi+1)2+(xj-1)2=xi2+xj2-2(xi-xj-1)<x12+x22
所以在x1,x2,x3,…,x40中,若两数差大于1,则较小数加1,较大数减1,这时,
x12+x22+x32+…+x402将减小
所以当有22个是1,18个是2时x12+x22+x32+…+x402将取最小值,即
B=1×22+22×18=94
故最大值为400,最小值为94.
①设x1≤x2≤…≤x40,由(x1-1)2+(x2+1)2>x12+x22,所以,当x1>1时,把x1调到1,这时,x12+x22+…+x402将增大,所以可以求出最大值.②若存在两数xi,xj,使得xj-xi≥2(1≤i<j≤40),根据(xi+1)2+(xj-1)2=xi2+xj2-2(xi-xj-1)<x12+x22,所以在x1,x2,x3,…,x40中,若两数差大于1,则较小数加1,较大数减1,这时,x12+x22+x32+…+x402将减小,可以求出最小值.
把58分写成40个正整数和的写法只有有限种,x12+x22+…+x402的最大值和最小值是存在的.
不妨设x1≤x2≤…≤x40,若x1>1,则x1+x2=(x1-1)+(x2+1),且
(x1-1)2+(x2+1)2=x12+x22+2(x2-x1)+2>x12+x22
所以,当x1>1时,把x1调到1,这时,x12+x22+x32+…+x402将增大;
同样,可把x2,x3…x39逐步调至1,这时,x12+x22+x32+…+x402将增大,于是,当x1,x2…x39均为1,x40=19时,x12+x22+x32+…+x402将取最大值,即
A=1×39+192=400.
若存在两数xi,xj,使得xj-xi≥2(1≤i<j≤40),则
(xi+1)2+(xj-1)2=xi2+xj2-2(xi-xj-1)<x12+x22
所以在x1,x2,x3,…,x40中,若两数差大于1,则较小数加1,较大数减1,这时,
x12+x22+x32+…+x402将减小
所以当有22个是1,18个是2时x12+x22+x32+…+x402将取最小值,即
B=1×22+22×18=94
故最大值为400,最小值为94.
看了 已知X1+X2+X3……+x...的网友还看了以下:
定义在R上的函数f(x)满足(x-1)f’(x)≤0,且y=f(x+1)为偶函数,当|x1-1|< 2020-06-08 …
用K-T条件求解Minf(x)=x12/2+x22/2-x1-2x2约束于2x1+3x2≤6x1+ 2020-06-12 …
设函数f(x)的定义域为R+,且满足条件f(4)=1,对于任意x1,x2∈R+,有f(x1×x2) 2020-07-08 …
26.12已知方程x∧2+(2+a)x+1+a+b=0的两根为x1,x2,且0<x1<1<x2,b 2020-07-15 …
已知双曲线过点(2,3),其中一条渐近线方程为y=3x,则双曲线的标准方程是()A.7x216-y 2020-07-19 …
方程ax2+bx+c=0中,x12+x22=(x1+x2)2-2•x1•x2,那x13+x23=什 2020-07-22 …
条件等式求值~..1若a,b,c都是正整数,且满足a^5=b^4,c^3=d^2且c-a=19,求 2020-07-24 …
已知函数f(x)=lnx-x.(1)求函数f(x)的单调区间;(2)若方程f(x)=m(m<-2) 2020-08-02 …
x^2-mx+2m-1=0的实数根分别是x1,x2,且x1^2+x2^2=7,求(x1-x2)^2x 2020-11-07 …
设函数f(x)对任意实数x1、x2都满足f(x1)+f(x2)=2f(x1+x22)(x1−x22) 2020-12-13 …