早教吧作业答案频道 -->数学-->
(1)如图(1),在四边形ABCD中,AB∥CD,如果延长DC到点E,使CE=AB,连接AE,那么有S四边形ABCD=S△ADE,作DE边中点P,连接AP,则AP所在直线为四边形ABCD的面积等分线,你能说明理由吗?(2)
题目详情
(1)如图(1),在四边形ABCD中,AB∥CD,如果延长DC到点E,使CE=AB,连接AE,那么有S四边形ABCD=S△ADE,作DE边中点P,连接AP,则AP所在直线为四边形ABCD的面积等分线,你能说明理由吗?
(2)如图(2),如果四边形ABCD中,AB与CD不平行,且S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并简单说明作图过程.
(1)如图(1),在四边形ABCD中,AB∥CD,如果延长DC到点E,使CE=AB,连接AE,那么有S四边形ABCD=S△ADE,作DE边中点P,连接AP,则AP所在直线为四边形ABCD的面积等分线,你能说明理由吗?
(2)如图(2),如果四边形ABCD中,AB与CD不平行,且S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并简单说明作图过程.
四边形ABCD=△ADE
△ADC△ABC

(2)如图(2),如果四边形ABCD中,AB与CD不平行,且S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并简单说明作图过程.

(2)如图(2),如果四边形ABCD中,AB与CD不平行,且S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并简单说明作图过程.

△ADC△ABC

▼优质解答
答案和解析
(1)如图1中,∵AB∥EC,AB=EC,
∴四边形ABEC是平行四边形,
∴BE∥AC,
∴S△ACE△ACE=S△ACB△ACB,
∵S梯形ABCD梯形ABCD=S△ACB△ACB+S△ACD△ACD,S△AED△AED=S△ACE△ACE+S△ACD△ACD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∵S梯形ABCD梯形ABCD=S△ACB△ACB+S△ACD△ACD,S△AED△AED=S△ACE△ACE+S△ACD△ACD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∵PE=PD,
∴S△APD△APD=
S△AED=
S梯形ABCD,
∴直线AP平分梯形ABCD的面积.
(2)如图2中,
作BE∥AC交DC的延长线于E,连接AE,取DE中点,直线AP就是所求,理由如下:
∵BE∥AC,
∴S△ACE=S△ACB,
∵S梯形ABCD=S△ACB+S△ACD,S△AED=S△ACE+S△ACD,
∴S△AED=S梯形ABCD,
∵PE=PD,
∴S△APD=
S△AED=
S梯形ABCD.
1 2 1 1 12 2 2S△AED△AED=
S梯形ABCD,
∴直线AP平分梯形ABCD的面积.
(2)如图2中,
作BE∥AC交DC的延长线于E,连接AE,取DE中点,直线AP就是所求,理由如下:
∵BE∥AC,
∴S△ACE=S△ACB,
∵S梯形ABCD=S△ACB+S△ACD,S△AED=S△ACE+S△ACD,
∴S△AED=S梯形ABCD,
∵PE=PD,
∴S△APD=
S△AED=
S梯形ABCD.
1 2 1 1 12 2 2S梯形ABCD梯形ABCD,
∴直线AP平分梯形ABCD的面积.
(2)如图2中,
作BE∥AC交DC的延长线于E,连接AE,取DE中点,直线AP就是所求,理由如下:
∵BE∥AC,
∴S△ACE△ACE=S△ACB△ACB,
∵S梯形ABCD梯形ABCD=S△ACB△ACB+S△ACD△ACD,S△AED△AED=S△ACE△ACE+S△ACD△ACD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∵PE=PD,
∴S△APD△APD=
S△AED=
S梯形ABCD.
1 2 1 1 12 2 2S△AED△AED=
S梯形ABCD.
1 2 1 1 12 2 2S梯形ABCD. 梯形ABCD.
∴四边形ABEC是平行四边形,

∴BE∥AC,
∴S△ACE△ACE=S△ACB△ACB,
∵S梯形ABCD梯形ABCD=S△ACB△ACB+S△ACD△ACD,S△AED△AED=S△ACE△ACE+S△ACD△ACD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∵S梯形ABCD梯形ABCD=S△ACB△ACB+S△ACD△ACD,S△AED△AED=S△ACE△ACE+S△ACD△ACD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∵PE=PD,
∴S△APD△APD=
1 |
2 |
1 |
2 |
∴直线AP平分梯形ABCD的面积.
(2)如图2中,

∵BE∥AC,
∴S△ACE=S△ACB,
∵S梯形ABCD=S△ACB+S△ACD,S△AED=S△ACE+S△ACD,
∴S△AED=S梯形ABCD,
∵PE=PD,
∴S△APD=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴直线AP平分梯形ABCD的面积.
(2)如图2中,

∵BE∥AC,
∴S△ACE=S△ACB,
∵S梯形ABCD=S△ACB+S△ACD,S△AED=S△ACE+S△ACD,
∴S△AED=S梯形ABCD,
∵PE=PD,
∴S△APD=
1 |
2 |
1 |
2 |
1 |
2 |
∴直线AP平分梯形ABCD的面积.
(2)如图2中,

∵BE∥AC,
∴S△ACE△ACE=S△ACB△ACB,
∵S梯形ABCD梯形ABCD=S△ACB△ACB+S△ACD△ACD,S△AED△AED=S△ACE△ACE+S△ACD△ACD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∵PE=PD,
∴S△APD△APD=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
看了 (1)如图(1),在四边形A...的网友还看了以下:
急如图ABCD是空间四边形它的四条边和两条对角线都相等,E,F分别是AD,BC的中点,求异面直线AF 2020-03-31 …
几ˋˊ何数学题自己先把图画出来吧图:一个由点A.B.C组成的等边三角形中,点D是边AB的中点,点E 2020-05-13 …
当矩阵从等号一边到另一边的时候,怎么确定他的左右位置?如:(E-A)B=6A,推出B=6(E-A) 2020-06-10 …
△ABC是等边三角形,D是边AC上一点,BD的垂直平分线交边AB于点E,交边BC于点F△ABC是等 2020-06-23 …
求微分方程的特解求微分方程cosydx+[1+e^[-(x)]sinydy=0,y(0)=π/4 2020-06-27 …
如图1,已知点E在正方形ABCD的边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点 2020-07-09 …
问一道数学题,科大上p175我这样做的:(1)将等式两边求导:1=f`*e^f+f*e^f*f`= 2020-07-18 …
为什么lnlny=lnx+lnc可以变成y=e^cx我想知道详细是怎么做的,对等式两边取e的指数之 2020-07-30 …
如图,等腰梯形ABCD中,AD∥BC,点E在边AD上,G,F,H分别是BE,BC,CE的中点.(1 2020-08-02 …
1.在一个多边形中,一个内角等于一个外角的2/7,求这个正多边形的边数及内角和(要过程)2.CE作为 2020-11-03 …