早教吧作业答案频道 -->数学-->
(1)如图(1),在四边形ABCD中,AB∥CD,如果延长DC到点E,使CE=AB,连接AE,那么有S四边形ABCD=S△ADE,作DE边中点P,连接AP,则AP所在直线为四边形ABCD的面积等分线,你能说明理由吗?(2)
题目详情
(1)如图(1),在四边形ABCD中,AB∥CD,如果延长DC到点E,使CE=AB,连接AE,那么有S四边形ABCD=S△ADE,作DE边中点P,连接AP,则AP所在直线为四边形ABCD的面积等分线,你能说明理由吗?
(2)如图(2),如果四边形ABCD中,AB与CD不平行,且S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并简单说明作图过程.
(1)如图(1),在四边形ABCD中,AB∥CD,如果延长DC到点E,使CE=AB,连接AE,那么有S四边形ABCD=S△ADE,作DE边中点P,连接AP,则AP所在直线为四边形ABCD的面积等分线,你能说明理由吗?
(2)如图(2),如果四边形ABCD中,AB与CD不平行,且S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并简单说明作图过程.
四边形ABCD=△ADE
△ADC△ABC

(2)如图(2),如果四边形ABCD中,AB与CD不平行,且S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并简单说明作图过程.

(2)如图(2),如果四边形ABCD中,AB与CD不平行,且S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并简单说明作图过程.

△ADC△ABC

▼优质解答
答案和解析
(1)如图1中,∵AB∥EC,AB=EC,
∴四边形ABEC是平行四边形,
∴BE∥AC,
∴S△ACE△ACE=S△ACB△ACB,
∵S梯形ABCD梯形ABCD=S△ACB△ACB+S△ACD△ACD,S△AED△AED=S△ACE△ACE+S△ACD△ACD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∵S梯形ABCD梯形ABCD=S△ACB△ACB+S△ACD△ACD,S△AED△AED=S△ACE△ACE+S△ACD△ACD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∵PE=PD,
∴S△APD△APD=
S△AED=
S梯形ABCD,
∴直线AP平分梯形ABCD的面积.
(2)如图2中,
作BE∥AC交DC的延长线于E,连接AE,取DE中点,直线AP就是所求,理由如下:
∵BE∥AC,
∴S△ACE=S△ACB,
∵S梯形ABCD=S△ACB+S△ACD,S△AED=S△ACE+S△ACD,
∴S△AED=S梯形ABCD,
∵PE=PD,
∴S△APD=
S△AED=
S梯形ABCD.
1 2 1 1 12 2 2S△AED△AED=
S梯形ABCD,
∴直线AP平分梯形ABCD的面积.
(2)如图2中,
作BE∥AC交DC的延长线于E,连接AE,取DE中点,直线AP就是所求,理由如下:
∵BE∥AC,
∴S△ACE=S△ACB,
∵S梯形ABCD=S△ACB+S△ACD,S△AED=S△ACE+S△ACD,
∴S△AED=S梯形ABCD,
∵PE=PD,
∴S△APD=
S△AED=
S梯形ABCD.
1 2 1 1 12 2 2S梯形ABCD梯形ABCD,
∴直线AP平分梯形ABCD的面积.
(2)如图2中,
作BE∥AC交DC的延长线于E,连接AE,取DE中点,直线AP就是所求,理由如下:
∵BE∥AC,
∴S△ACE△ACE=S△ACB△ACB,
∵S梯形ABCD梯形ABCD=S△ACB△ACB+S△ACD△ACD,S△AED△AED=S△ACE△ACE+S△ACD△ACD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∵PE=PD,
∴S△APD△APD=
S△AED=
S梯形ABCD.
1 2 1 1 12 2 2S△AED△AED=
S梯形ABCD.
1 2 1 1 12 2 2S梯形ABCD. 梯形ABCD.
∴四边形ABEC是平行四边形,

∴BE∥AC,
∴S△ACE△ACE=S△ACB△ACB,
∵S梯形ABCD梯形ABCD=S△ACB△ACB+S△ACD△ACD,S△AED△AED=S△ACE△ACE+S△ACD△ACD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∵S梯形ABCD梯形ABCD=S△ACB△ACB+S△ACD△ACD,S△AED△AED=S△ACE△ACE+S△ACD△ACD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∵PE=PD,
∴S△APD△APD=
1 |
2 |
1 |
2 |
∴直线AP平分梯形ABCD的面积.
(2)如图2中,

∵BE∥AC,
∴S△ACE=S△ACB,
∵S梯形ABCD=S△ACB+S△ACD,S△AED=S△ACE+S△ACD,
∴S△AED=S梯形ABCD,
∵PE=PD,
∴S△APD=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
∴直线AP平分梯形ABCD的面积.
(2)如图2中,

∵BE∥AC,
∴S△ACE=S△ACB,
∵S梯形ABCD=S△ACB+S△ACD,S△AED=S△ACE+S△ACD,
∴S△AED=S梯形ABCD,
∵PE=PD,
∴S△APD=
1 |
2 |
1 |
2 |
1 |
2 |
∴直线AP平分梯形ABCD的面积.
(2)如图2中,

∵BE∥AC,
∴S△ACE△ACE=S△ACB△ACB,
∵S梯形ABCD梯形ABCD=S△ACB△ACB+S△ACD△ACD,S△AED△AED=S△ACE△ACE+S△ACD△ACD,
∴S△AED△AED=S梯形ABCD梯形ABCD,
∵PE=PD,
∴S△APD△APD=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
看了 (1)如图(1),在四边形A...的网友还看了以下:
求tan(xy)/y当(x,y)趋近于(2,0)的极限lim[(x,y)→(2,0)]tan(x, 2020-06-04 …
二次根号2.5在数轴上如何表示用尺规作图画出三次根号2这点边长为三次根号2的立方体的体积是2,所以 2020-06-12 …
有个导数问题突然想不通了比如成本C=x^2.那么边际成本就是2x,当产量x=1的时候,边际成本是2 2020-07-16 …
竖直平面内的非匀速圆周运动的最高点,也就是极限最低速度是V=(GR)^2那点有没有如题.圆周运动的 2020-07-20 …
如图,分别延长平行四边形ABCD的边AB、BC、CD、AD到点E、F、G、H,使BE=CF=DG= 2020-07-29 …
已知四边形ABCD是矩形,AB=根号3,对角线的中垂线与直线BC交于点M,与直线ad交于点n,如果 2020-07-30 …
一个正方形,里面有一个1/4圆弧,圆弧半径为正方形边长,是2.那么边长的中点与圆弧的中点所构成的直 2020-07-31 …
一个5边形点阵,中心是一个点为第一层,第2层每边为2个点(5边形的一个点为相邻两边公用),第3层每层 2021-01-08 …
求在一个点上的导数是什么意思?比如f(x)=2x^2+2x则导函数为4x+2那点(1,4)的导数是不 2021-02-05 …
1从N边形的一个顶点可以引几条对角线?它们将N边形分成几个三角形?2从N边形的一个顶点可以引7条对角 2021-02-21 …