怎么根据二叉树的两个遍历算出另一个遍历,有什么技巧比如,已知某二叉树的后序遍历序列是DACBE,中序遍历序列是DEBAC,则它的前序遍历序列是。
比如,已知某二叉树的后序遍历序列是DACBE,中序遍历序列是DEBAC,则它的前序遍历序列是_______。
用递归法可画出二叉树图然后看图写出你要的遍历哈,下面我给你讲下哈(好理解的):
假设有棵树,长下面这个样子,它的前序遍历,中序遍历,后续遍历都很容易知道。
PreOrder: GDAFEMHZ
InOrder: ADEFGHMZ
PostOrder: AEFDHZMG
现在,假设仅仅知道前序和中序遍历,如何求后序遍历呢?比如,已知一棵树的前序遍历是”GDAFEMHZ”,而中序遍历是”ADEFGHMZ”应该如何求后续遍历?
第一步,root最简单,前序遍历的第一节点G就是root。
第二步,继续观察前序遍历GDAFEMHZ,除了知道G是root,剩下的节点必然是root的左右子树之外,没法找到更多信息了。
第三步,那就观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。
第四步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。
第五步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的右子树的第一个节点就是右子树的根节点。
如何知道哪里是前序遍历中的左子树和右子树的分界线呢?通过中序遍历去数节点的个数。
在上一次中序遍历中,root左侧是A、D、E、F,所以有4个节点位于root左侧。那么在前序遍历中,必然是第1个是G,第2到第5个由A、D、E、F过程,第6个就是root的右子树的根节点了,是M。
第六步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。
第七步,其实,如果仅仅要求写后续遍历,甚至不要专门占用空间保存还原后的树。只需要稍微改动第六步,就能实现要求。仅需要把第六步的递归的过程改动为如下:
1 确定根,确定左子树,确定右子树。
2 在左子树中递归。
3 在右子树中递归。
4 打印当前根。
我上面给你找出了一部分,你只要重复我上面的方法就可以找出其他的,加油,慢慢体会,你行的,不清楚再问我。
若a+b=b+c,则a-b(c为整式)若a=b,则ac=bc(c为整式)若ac=bc,则a=b(c 2020-04-22 …
分解因式:a²+2a(b+c)+(b+c)²=分解因式:(2x+y)²-(x+2y²)=(m+n) 2020-05-13 …
已知有理数a.b.c.在数轴上的位置如图所示,|a|=|b|1.a+b与a/b的值;2.c-a/c 2020-06-03 …
设a,b,c∈R,证明a^2acc^23b(abc)≥0,并指出等号何时成立问题补充:证明:不妨设 2020-06-23 …
为了应用平方差公式计算(a-b+c)(a+b-c),必须先适当变形,下列各变形中,正确的是()A. 2020-07-31 …
(a+b+c)^3-(b+c-a)^3-(c+a-b)^3-(a+b-c)^3=[(a+b+c)^ 2020-08-02 …
已知正数abc,且a/b+c=b/c+a=c/a+b=k.则在下列四个点中,在正比例函数y=kx图像 2020-11-01 …
在三角形ABC和三角形A'B'C'中CD,C'D'分别是高,并且AC=A'C;,CD=C'D',∠A 2020-11-28 …
已知a+b+c=0,abc不等于0,且a,b,c,互不相等,求证:[(b-c)/a+(c-a)/b+ 2020-12-01 …
设a、b、c为实数,且a+b+c=2倍的(根号a+1)+4倍的(根号b+1)+b倍的(根号c-2)- 2020-12-31 …