早教吧作业答案频道 -->数学-->
已知函数f(x)是R上的增函数,a、b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).”(1)写出其逆命题,判断其真假,并证明你的结论;(2)写出其逆否命题,判断其真假,并
题目详情
已知函数f(x)是R上的增函数,a、b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).”
(1)写出其逆命题,判断其真假,并证明你的结论;
(2)写出其逆否命题,判断其真假,并证明你的结论.
(1)写出其逆命题,判断其真假,并证明你的结论;
(2)写出其逆否命题,判断其真假,并证明你的结论.
▼优质解答
答案和解析
(1)逆命题是:若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0,真命题.
用反证法证明:
设a+b<0,则a<-b,b<-a,
∵f(x)是R上的增函数,
∴f(a)<f(-b),f(b)<f(-a),
∴f(a)+f(b)<f(-a)+f(-b),这与题设f(a)+f(b)≥f(-a)+f(-b)矛盾,所以逆命题为真.
(2)逆否命题:若f(a)+f(b)<f(-a)+f(-b),
则a+b<0,为真命题.
由于互为逆否命题同真假,故只需证原命题为真.
∵a+b≥0,∴a≥-b,b≥-a,
又∵f(x)在R上是增函数,
∴f(a)≥f(-b),f(b)≥f(-a).
∴f(a)+f(b)≥f(-a)+f(-b),
∴原命题真,故逆否命题为真.
用反证法证明:
设a+b<0,则a<-b,b<-a,
∵f(x)是R上的增函数,
∴f(a)<f(-b),f(b)<f(-a),
∴f(a)+f(b)<f(-a)+f(-b),这与题设f(a)+f(b)≥f(-a)+f(-b)矛盾,所以逆命题为真.
(2)逆否命题:若f(a)+f(b)<f(-a)+f(-b),
则a+b<0,为真命题.
由于互为逆否命题同真假,故只需证原命题为真.
∵a+b≥0,∴a≥-b,b≥-a,
又∵f(x)在R上是增函数,
∴f(a)≥f(-b),f(b)≥f(-a).
∴f(a)+f(b)≥f(-a)+f(-b),
∴原命题真,故逆否命题为真.
看了 已知函数f(x)是R上的增函...的网友还看了以下:
求逆否命题若q<1,则方程x²+2x+q=0有实根.则其逆否命题是▁▁▁▁,并判断原命题及其逆否命题 2020-03-30 …
运高中用命题知识.证明:若a²-b²+2a-4b-3≠0,a-b≠1.是原命题和逆否命题。是不是先 2020-05-20 …
根据P→Q真假值取法的定义可以看出,若P为假,不论Q是否为真,则P→Q为真.p都是假的了怎么还可以 2020-06-20 …
真命题的否定/否命题一定是假命题吗?假命题的否定一定是真命题吗真命题的否定一定是假命题吗?假命题的 2020-06-20 …
求一道逻辑题解答已知命题:若一个数的平方是1,则这个数是1.求此命题的否定命题,并判断原命题和否定 2020-06-27 …
写出命题“非空集合A、B是全集U的子集,若A是B的真子集,则AnCuB=空集”的否命题,指出是真命 2020-08-01 …
原命题与否命题的真假关系?大家都在讨论原命题与命题的否定的关系,我知道,他们对立,即不可同真同假. 2020-08-01 …
网赵丽宏在地图上,经线和纬线,/织成一张巨大的网;/网住大陆,也网住海洋./幸好,那并不是真的,否则 2020-11-04 …
输入-2,按照如图所示的程序进行运算(完成一个方框内的运算后,把结果输入下一个方框内继续进行运算)并 2020-12-09 …
某一程序框图开始r=2,S=0S=S+rr=r+3判断框r≥1000?是输出.否回到S=S+r结束问 2021-01-15 …