早教吧作业答案频道 -->数学-->
已知定义在(0,正无穷)上的函数f(x)满足对任意x,y属于(0,正无穷)都有xyf(xy)=xf(x)+yf(y)记数列an=f(2∧n)1,证明a1=a22,令数列bn=2∧n×an,求证数列bn为等差数列3,若a1=1,Sn为数
题目详情
已知定义在(0,正无穷)上的函数f(x)满足对任意x,y属于(0,正无穷)都有xyf(xy)=xf(x)+yf(y)
记数列an=f(2∧n)
1,证明a1=a2
2,令数列bn=2∧n × an,求证数列bn为等差数列
3,若a1=1,Sn为数列an的前n项和,求Sn
记数列an=f(2∧n)
1,证明a1=a2
2,令数列bn=2∧n × an,求证数列bn为等差数列
3,若a1=1,Sn为数列an的前n项和,求Sn
▼优质解答
答案和解析
1、在已知等式中,取 x=y=2 得 4f(4)=2f(2)+2f(2)=4f(2) ,
l因此 f(2)=f(4) ,即 a1=a2 .
2、在已知等式中,取 x=2 ,y=2^n (n=1,2,3,.) ,
则 2^(n+1)*f[2^(n+1)]=2f(2)+2^n*f(2^n) ,
即 b(n+1)=2f(2)+bn ,
则 b(n+1)-bn=2f(2) 为定值,因此 {bn}是等差数列 .
3、因为 a1=1 ,所以 b1=2a1=2 ,公差 d= 2f(2)=2a1=2 ,
所以 bn=2n ,
则 an=bn/2^n=n/2^(n-1) ,
所以 Sn=1+2/2+3/4+.+n/2^(n-1) ,
两边同乘以 2 得 2Sn=2+2+3/2+.+n/2^(n-2) ,
相减得 Sn=2+[1+1/2+1/4+.+1/2^(n-2)]-n/2^(n-1)
=2+2-1/2^(n-1)-n/2^(n-1)
=4-(n+1)/2^(n-1) .
l因此 f(2)=f(4) ,即 a1=a2 .
2、在已知等式中,取 x=2 ,y=2^n (n=1,2,3,.) ,
则 2^(n+1)*f[2^(n+1)]=2f(2)+2^n*f(2^n) ,
即 b(n+1)=2f(2)+bn ,
则 b(n+1)-bn=2f(2) 为定值,因此 {bn}是等差数列 .
3、因为 a1=1 ,所以 b1=2a1=2 ,公差 d= 2f(2)=2a1=2 ,
所以 bn=2n ,
则 an=bn/2^n=n/2^(n-1) ,
所以 Sn=1+2/2+3/4+.+n/2^(n-1) ,
两边同乘以 2 得 2Sn=2+2+3/2+.+n/2^(n-2) ,
相减得 Sn=2+[1+1/2+1/4+.+1/2^(n-2)]-n/2^(n-1)
=2+2-1/2^(n-1)-n/2^(n-1)
=4-(n+1)/2^(n-1) .
看了 已知定义在(0,正无穷)上的...的网友还看了以下:
求解答数学题目填空部分:1.指数函数f(x)=a的x次方(a>0,a≠1)在区间[1,2]的最大值 2020-05-02 …
已知正数x,y满足x+2y=2,若x+8y大于(m2-8m)xy恒成立,则实数m的取值范围是()A 2020-05-14 …
1.已知f(x)为R上的减函数,则满足f(1/x)>f(1)实数x的取值范围是A.(负无穷,1) 2020-05-16 …
已知函数f(x)=x^2+2x+a/xx属于{1,正无穷)1若a为正常数,求f(x)的最小值?若a 2020-06-03 …
已知函数fx=x^2-ax+a/x,x属于1到正无穷,1)当a=4时,求函数fx的最小值2)x属于 2020-06-14 …
求X的取值范围?F(X)是R上的减函数,则满足F(1/X)>F(1)的X的取值范围是A.(-无穷, 2020-07-19 …
设有微分方程y'-2y=f(x),其中当x1时f(x)=0,求在R内连续函数y=y(x),使在(负 2020-07-31 …
已知数列{an}a满足an+1=2a(n)/a(n)+1,若{an}是只有5项的有穷数列则a1=已 2020-08-02 …
lim[cos(u/4n)+cos(3u/4n)+.+cos(2n-1)u/4n]/n这里n趋于无穷 2020-11-01 …
感激不尽.对定义域在S=[1,正无穷)的函数f(x),对任意x属于[1,正无穷)满足对定义域在S=[ 2020-12-09 …