早教吧作业答案频道 -->数学-->
已知定义在(0,正无穷)上的函数f(x)满足对任意x,y属于(0,正无穷)都有xyf(xy)=xf(x)+yf(y)记数列an=f(2∧n)1,证明a1=a22,令数列bn=2∧n×an,求证数列bn为等差数列3,若a1=1,Sn为数
题目详情
已知定义在(0,正无穷)上的函数f(x)满足对任意x,y属于(0,正无穷)都有xyf(xy)=xf(x)+yf(y)
记数列an=f(2∧n)
1,证明a1=a2
2,令数列bn=2∧n × an,求证数列bn为等差数列
3,若a1=1,Sn为数列an的前n项和,求Sn
记数列an=f(2∧n)
1,证明a1=a2
2,令数列bn=2∧n × an,求证数列bn为等差数列
3,若a1=1,Sn为数列an的前n项和,求Sn
▼优质解答
答案和解析
1、在已知等式中,取 x=y=2 得 4f(4)=2f(2)+2f(2)=4f(2) ,
l因此 f(2)=f(4) ,即 a1=a2 .
2、在已知等式中,取 x=2 ,y=2^n (n=1,2,3,.) ,
则 2^(n+1)*f[2^(n+1)]=2f(2)+2^n*f(2^n) ,
即 b(n+1)=2f(2)+bn ,
则 b(n+1)-bn=2f(2) 为定值,因此 {bn}是等差数列 .
3、因为 a1=1 ,所以 b1=2a1=2 ,公差 d= 2f(2)=2a1=2 ,
所以 bn=2n ,
则 an=bn/2^n=n/2^(n-1) ,
所以 Sn=1+2/2+3/4+.+n/2^(n-1) ,
两边同乘以 2 得 2Sn=2+2+3/2+.+n/2^(n-2) ,
相减得 Sn=2+[1+1/2+1/4+.+1/2^(n-2)]-n/2^(n-1)
=2+2-1/2^(n-1)-n/2^(n-1)
=4-(n+1)/2^(n-1) .
l因此 f(2)=f(4) ,即 a1=a2 .
2、在已知等式中,取 x=2 ,y=2^n (n=1,2,3,.) ,
则 2^(n+1)*f[2^(n+1)]=2f(2)+2^n*f(2^n) ,
即 b(n+1)=2f(2)+bn ,
则 b(n+1)-bn=2f(2) 为定值,因此 {bn}是等差数列 .
3、因为 a1=1 ,所以 b1=2a1=2 ,公差 d= 2f(2)=2a1=2 ,
所以 bn=2n ,
则 an=bn/2^n=n/2^(n-1) ,
所以 Sn=1+2/2+3/4+.+n/2^(n-1) ,
两边同乘以 2 得 2Sn=2+2+3/2+.+n/2^(n-2) ,
相减得 Sn=2+[1+1/2+1/4+.+1/2^(n-2)]-n/2^(n-1)
=2+2-1/2^(n-1)-n/2^(n-1)
=4-(n+1)/2^(n-1) .
看了 已知定义在(0,正无穷)上的...的网友还看了以下:
已知定义在(0,正无穷)上的函数f(x)满足对任意x,y属于(0,正无穷)都有xyf(xy)=xf 2020-04-27 …
带足和穷的成语必须足的意思是值得,穷的意思是尽头 2020-06-07 …
带足和穷的成语必须足的意思是值得,穷的意思是尽头 2020-06-07 …
已知线性方程组x1+x2+x3=0ax1+bx2+cx3=0a2x1+b2x2+c2x3=0(1) 2020-06-16 …
形容家庭经济状况的词语除了“拮据”、“宽裕”、“富足”、“穷困潦倒”外还有哪些?特别是表达收支平衡 2020-07-02 …
下列词语的书写全部正确的一项是[]A.转弯抹角张皇实措莫名其妙逃蹿B.名副其实富丽堂皇锐不可挡赃物 2020-07-02 …
设函数f(x)在(负无穷~正无穷)上满足f(2-x)=f(2+x),f(7-x)=f(7最好十分钟 2020-07-22 …
将下面的成语补充完整。鸡()狗碎低眉()眼连声()()()沛流离大()广众()目伤怀()不足道穷愁 2020-07-24 …
如果有穷数列a1,a2,a3,…am(m为正整数)满足条件a1=am,a2=am-1,…,am=a1 2020-10-30 …
现代文阅读:论述类文本(18分)阅读下面的文章,完成后面的题目。暮年放翁和晚年雷诺阿肖复兴放翁晚景颇 2021-01-01 …