若抛物线y2=2px(p>0)的焦点为F,其准线经过双曲线的左焦点,点M为这两条曲线的一个交点,且|MF|=p,则双曲线的离心率为()A.B.C.D.
若抛物线y2=2px(p>0)的焦点为F,其准线经过双曲线的左焦点,点M为这两条曲线的一个交点,且|MF|=p,则双曲线的离心率为( )
A. B.
C.
D.
C【考点】双曲线的简单性质.
【专题】综合题;方程思想;综合法;圆锥曲线的定义、性质与方程.
【分析】确定抛物线y2=2px(p>0)的焦点与准线方程,利用点M为这两条曲线的一个交点,且|MF|=p,求出M的坐标,代入双曲线方程,即可求得结论.
【解答】抛物线y2=2px(p>0)的焦点为F(,0),其准线方程为x=﹣
,
∵准线经过双曲线的左焦点,
∴c=;
∵点M为这两条曲线的一个交点,且|MF|=p,
∴M的横坐标为,
代入抛物线方程,可得M的纵坐标为±p,
将M的坐标代入双曲线方程,可得﹣
=1,∴a=
p,
∴e==1+
.
故选:C.
【点评】本题考查抛物线的几何性质,考查曲线的交点,考查双曲线的几何性质,确定M的坐标是关键.
如图,点A为反比例函数y=kx(k≠0)在第一象限的图象上一点,过点A作AB⊥y轴于点B.点C为y 2020-05-14 …
如图,在平面直角坐标系中,直线y=4/3x+4分别交x轴 y轴于AB两点,点C为OB的中点如图,在 2020-05-16 …
在平面直角坐标系XOY中,Y=根号三被圆C1:X^2+Y^2+8X+F=0截得弦长为21求圆C1的 2020-06-09 …
如图,点A、B分别在x轴的负半轴和y轴的正半轴上,点C(2,-2),CA、CB分别交坐标轴于D、E 2020-06-12 …
1:直线y=二分之一-4与x轴的交点坐标为,与y轴的交点坐标为?2:对于1:直线y=二分之一-4与 2020-06-14 …
如图,直线y=kx+8分别与x轴、y轴相交于A、B两点,O为坐标原点,A点的坐标为(4,0).(1 2020-06-29 …
已知O为原点,点P(x,y)在单位圆x2+y2=1上已知O为原点,点P(x,y)在单位圆x^2+y 2020-07-21 …
已知直线y=-x+2与x轴交于A点,与y轴交于B点,一抛物线经过A,B两点且对称轴为x=2求:1, 2020-07-22 …
已知曲线上一点(x,y),过该点做曲线的法向量n,切向量t.请问为什么cos(n,x)=cos(t 2020-07-30 …
如图,P是双曲线y=4x(x>0)的一个分支上的一点,以点P为圆心,1个单位长度为半径作⊙P,设点P 2020-12-03 …