早教吧作业答案频道 -->数学-->
如图,点A、B分别在x轴的负半轴和y轴的正半轴上,点C(2,-2),CA、CB分别交坐标轴于D、E,CA⊥AB,且CA=AB.(1)求点B的坐标;(2)如图2,连接DE,求证:BD-AE=DE;(3)如图3,若点F为(4
题目详情
如图,点A、B分别在x轴的负半轴和y轴的正半轴上,点C(2,-2),CA、CB分别交坐标轴于D、E,CA⊥AB,且CA=AB.
(1)求点B的坐标;
(2)如图2,连接DE,求证:BD-AE=DE;
(3)如图3,若点F为(4,0),点P在第一象限内,连接PF,过P作PM⊥PF交y轴于点M,在PM上截取PN=PF,连接PO、BN,过P作∠OPG=45°交BN于点G,求证:点G是BN的中点.

(1)求点B的坐标;
(2)如图2,连接DE,求证:BD-AE=DE;
(3)如图3,若点F为(4,0),点P在第一象限内,连接PF,过P作PM⊥PF交y轴于点M,在PM上截取PN=PF,连接PO、BN,过P作∠OPG=45°交BN于点G,求证:点G是BN的中点.

▼优质解答
答案和解析
(1)作CM⊥x轴于M,
∵C(2,-2),
∴CM=2,CN=2,
∵AB⊥AC,
∴∠BAC=∠AOB=∠CMA=90°,
∴∠BAO+∠CAM=90°,∠CAM+∠ACM=90°,
∴∠BAO=∠ACM,
在△BAO和△ACM中,
,
∴△BAO≌△ACM,
∴AO=CM=2,OB=AM=AO+OM=2+2=4,
∴B(0,4).
(2)证明:在BD上截取BF=AE,连AF,
∵△BAO≌△CAM,
∴∠ABF=∠CAE,
在△ABF和△ACE中,
,
∴△ABF≌△CAE(SAS),
∴AF=CE,∠ACE=∠BAF=45°,
∵∠BAC=90°,
∴∠FAD=45°=∠ECD,
在△AFD和△CED中,
,
∴△AFD≌△CED(SAS),
∴DE=DF,
∴BD-AE=DE;
(3)如图3,作EO⊥OP交PG的延长线于E,连接EB、EN、PB,
∵∠EOP=90°,∠EPO=45°,
∴∠OEP=∠EPO=45°,
∴EO=PO,
∵∠EOP=∠BOF=90°,
∴∠EOB=∠POF,
在△EOB和△POF中,
,
∴△EOB≌△POF,
∴EB=PF=PN,∠1=∠OFP,
∵∠2+∠PMO=180°,
∵∠MOF=∠MPF=90°,
∴∠OMP+∠OFP=180°,
∴∠2=∠OFP=∠1,
∴EB∥PN,
∵EB=PN,
∴四边形ENPB是平行四边形,
∴BG=GN,
即点G是BN中点.
(1)作CM⊥x轴于M,∵C(2,-2),
∴CM=2,CN=2,
∵AB⊥AC,
∴∠BAC=∠AOB=∠CMA=90°,
∴∠BAO+∠CAM=90°,∠CAM+∠ACM=90°,
∴∠BAO=∠ACM,
在△BAO和△ACM中,
|
∴△BAO≌△ACM,
∴AO=CM=2,OB=AM=AO+OM=2+2=4,
∴B(0,4).
(2)证明:在BD上截取BF=AE,连AF,
∵△BAO≌△CAM,

∴∠ABF=∠CAE,
在△ABF和△ACE中,
|
∴△ABF≌△CAE(SAS),
∴AF=CE,∠ACE=∠BAF=45°,
∵∠BAC=90°,
∴∠FAD=45°=∠ECD,
在△AFD和△CED中,
|
,∴△AFD≌△CED(SAS),
∴DE=DF,
∴BD-AE=DE;
(3)如图3,作EO⊥OP交PG的延长线于E,连接EB、EN、PB,
∵∠EOP=90°,∠EPO=45°,
∴∠OEP=∠EPO=45°,
∴EO=PO,
∵∠EOP=∠BOF=90°,
∴∠EOB=∠POF,
在△EOB和△POF中,
|
∴△EOB≌△POF,
∴EB=PF=PN,∠1=∠OFP,
∵∠2+∠PMO=180°,
∵∠MOF=∠MPF=90°,
∴∠OMP+∠OFP=180°,
∴∠2=∠OFP=∠1,
∴EB∥PN,
∵EB=PN,
∴四边形ENPB是平行四边形,
∴BG=GN,
即点G是BN中点.
看了 如图,点A、B分别在x轴的负...的网友还看了以下:
1、如图,已知平行四边形ABCD中,AB=4,AD=2,E是AB边上的一动点,设AE=,DE的延长 2020-05-16 …
如图,反比例函数y=-x分之3(x大于0的图像经过矩形OABC的边AB的点E且AE=3分之1AB与 2020-06-06 …
(“*”为未知数x)e*/a+a/e*=1/ae*+ae*为什么会等于(a-1/a)(1/e*-e 2020-06-07 …
如图,△ABC中,∠ACB=90°,BC=6,AC=8.点E与点B在AC的同侧,且AE⊥AC.(1 2020-06-12 …
协方差cov(X+20,Y+10)=cov(X,知道了COV(X+a,Y+b)=E[(X+a)(Y 2020-06-17 …
概率论计算问题如联合概率密度为Ae^(-2x^2+2xy-y^2)的二维分布求他的A值∫∫Ae^( 2020-08-02 …
矩阵随机向量期望性质证明性质如下:1、E(AX)=AE(X)2、E(AXB)=AE(X)B3、E(A 2020-10-31 …
2011年北京中考题:在Rt△ABC中,角ACB=90度,角BAC=30度,AB=2,D是AB边上的 2020-11-01 …
已知菱形ABCD的边长为2,∠DAB=60°,HF⊥DA于H,HF⊥CB的延长线于H,且HF与AB相 2020-12-05 …
已知菱形ABCD的边长为2,∠DAB=60°,HF⊥DA于H,HF⊥CB的延长线于H,且HF与AB相 2020-12-05 …