早教吧作业答案频道 -->数学-->
已知函数fx=2-x/x-1,证明函数fx在(-1,+正无穷)上为减函数
题目详情
已知函数f x=2-x/x-1,证明函数fx在(-1,+正无穷)上为减函数
▼优质解答
答案和解析
你的题目是不是写错了.x不能等于1,更不用谈在(-1,+正无穷)上为减函数了.
如果是f(x)=(2-x)/(x+1)
则证明如下:
f(x)=(2-x)/(x+1)=(3-x-1)/(x+1)=3/(x+1) -1;
∵x+1在(-1.+∞)上单调增;
∴3/(x+1)在(-1.+∞)上单调减;
∴f(x)=在(-1.+∞)上单调减;
----------------------------------------
如果用定义证明:
令-1<x1<x2;
f(x2)-f(x1)=3/(x2+1) -1-3/(x1+1) +1;
=3[1/(x2+1) -1/(x1+1) ];
=3(x1+1-x2-1) / [(x2+1)(x1+1) ];
=3(x1-x2) / [(x2+1)(x1+1) ];
∵(x1-x2)<0,;[(x2+1)(x1+1) >0
∴3(x1-x2) / [(x2+1)(x1+1) ] <0;
即:f(x2)-f(x1)<0,f(x2)<f(x1),得证
如果是f(x)=(2-x)/(x+1)
则证明如下:
f(x)=(2-x)/(x+1)=(3-x-1)/(x+1)=3/(x+1) -1;
∵x+1在(-1.+∞)上单调增;
∴3/(x+1)在(-1.+∞)上单调减;
∴f(x)=在(-1.+∞)上单调减;
----------------------------------------
如果用定义证明:
令-1<x1<x2;
f(x2)-f(x1)=3/(x2+1) -1-3/(x1+1) +1;
=3[1/(x2+1) -1/(x1+1) ];
=3(x1+1-x2-1) / [(x2+1)(x1+1) ];
=3(x1-x2) / [(x2+1)(x1+1) ];
∵(x1-x2)<0,;[(x2+1)(x1+1) >0
∴3(x1-x2) / [(x2+1)(x1+1) ] <0;
即:f(x2)-f(x1)<0,f(x2)<f(x1),得证
看了 已知函数fx=2-x/x-1...的网友还看了以下:
数字1与数字0.999999.后面9无限循环.这两个数哪一个大?请给出证明,如题,我证明的是相等, 2020-05-16 …
椭圆x^2/a^2+y^2/b^2=1的左右顶点分别为AB,点P在椭圆上且异于AB两点,O为坐标原 2020-05-16 …
证明函数f(x)=x³+x在R上是增函数.用定义法证明能证出是增函数,而把原式改成f(x)=x(x 2020-05-21 …
设fn(x)=x+x^2+x^3+...+x^n(n≥2)(1)证明方程fn(x)=1有唯一的正根 2020-06-11 …
一道让人匪夷所思的数学题求证0.999...=1(...为循环)证明:因为1/3=0.333... 2020-06-25 …
高数证明题高数一道证明题设函数fx在0,1上连续,在0,1内可导,且3乘上积分号2/3到1fxdx 2020-07-16 …
一道组合证明题证明:1+1/2C1n+1/3Cn2+……+1/(n+1)Cnn=1/(n+1)(C 2020-08-01 …
证明题(本大题5分)1.设f(x)在[0,1]上连续,且f(0)=0,f(1)=1.证明:至少存在 2020-08-01 …
f(x1·x2)=f(x1)+f(x2),(1)请证明它在(0,+无限)上是增函数(2)在(1)的 2020-08-03 …
说明理由证明题:1.设f(x)、g(x)在[-a,a]上连续,g(x)为偶函数,且f(x)满足条件f 2020-11-01 …