早教吧作业答案频道 -->数学-->
已知圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上.(1)求圆M的方程;(2)设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线,A、B为切点,求四边形PAMB的面积的最小值.
题目详情
已知圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上.
(1)求圆M的方程;
(2)设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线,A、B为切点,求四边形PAMB的面积的最小值.
(1)求圆M的方程;
(2)设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线,A、B为切点,求四边形PAMB的面积的最小值.
▼优质解答
答案和解析
(1)设圆M的方程为:(x-a)2+(y-b)2=r2(r>0),
根据题意得
,解得:a=b=1,r=2,
故所求圆M的方程为:(x-1)2+(y-1)2=4;
(2)由题知,四边形PAMB的面积为S=S△PAM+S△PBM=
(|AM||PA|+|BM||PB|).
又|AM|=|BM|=2,|PA|=|PB|,所以S=2|PA|,
而|PA|2=|PM|2-|AM|2=|PM|2-4,
即S=2
.
因此要求S的最小值,只需求|PM|的最小值即可,即在直线3x+4y+8=0上找一点P,使得|PM|的值最小,
所以|PM|min=
=3,所以四边形PAMB面积的最小值为2
=2
.

根据题意得
|
故所求圆M的方程为:(x-1)2+(y-1)2=4;
(2)由题知,四边形PAMB的面积为S=S△PAM+S△PBM=
1 |
2 |
又|AM|=|BM|=2,|PA|=|PB|,所以S=2|PA|,
而|PA|2=|PM|2-|AM|2=|PM|2-4,
即S=2
|PM|2−4 |
因此要求S的最小值,只需求|PM|的最小值即可,即在直线3x+4y+8=0上找一点P,使得|PM|的值最小,
所以|PM|min=
3+4+8 |
5 |
|PM|2−4 |
5 |
看了 已知圆M过两点C(1,-1)...的网友还看了以下:
f(x)=(x-1)^2(x+b)e^x求导等于多少?我算的是e^x[ (x-1)^2(x+b)+ 2020-05-17 …
关于x的方程x-1/3[x-1/3(x-b)]=1/9(x+b)的解为x=a,而x=8又是关于x的 2020-05-20 …
设F(X)=(2A-1)X+B想R上是增函数,则有A.A大于等于二分之一.B.A小于等于二分之一C 2020-06-03 …
(2014•宝山区二模)设函数g(x)=3x,h(x)=9x.(1)解方程:h(x)-8g(x)- 2020-06-12 …
若函数f(x)在定义域D内某区间I上是增函数,而y=f(x)x在I上是减函数,则称y=f(x)在I 2020-06-13 …
已知:a、b为实数,关于x的方程x2-(a-1)x+b+3=0的一个实根为a+1.(1)用含a的代 2020-06-22 …
定义g(x)=f(x)-x的零点x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b 2020-07-30 …
1..设x/a+y/b+z/c=1,a/x+b/y+c/z=0,求x*2/a*2+y*2/b*2+z 2020-10-30 …
1.(a+b)^2-6(a+b)+9=2.(m+2n)^2-6(m+2n)(2m-n)+9(n-2m 2020-11-03 …
设0<b<1+a,若关于x的不等式(x-b)2>(ax)2的解集中的整数恰有3个,则a的取值范围是( 2020-11-10 …