早教吧作业答案频道 -->数学-->
已知O是△ABC的内一点,求证O是△ABC的重心的充要条件是OA+OB+OC=0向量解法
题目详情
已知O是△ABC的内一点,求证O是△ABC的重心的充要条件是OA+OB+OC=0
向量解法
向量解法
▼优质解答
答案和解析
必要性证明:设O为重心,E为BC中点.
OA=(2/3)EA==(2/3)(EB+BA)==(2/3)(CB/2+BA)=(CB+2BA)/3
同理,OB=(AC+2CB)/3.OC=(BA+2AC)/3.
CA+OB+OC=(3CB+3BA+3AC)/3=CC=0.
充分性证明:如图:OA={-x,-y}.OB={a-x.-y}.OC={b-x,c-y}.
OA+OB+OC={-x+a-x+b-x,-y-y+c-y}=0
-x+a-x+b-x=0.x=(a+b)/3.,-y-y+c-y=0,y=c/3.即O((a+b)/3,c/3)
请 564663878 朋友 自己验证.O((a+b)/3,c/3)正是⊿ABC的重心.
OA=(2/3)EA==(2/3)(EB+BA)==(2/3)(CB/2+BA)=(CB+2BA)/3
同理,OB=(AC+2CB)/3.OC=(BA+2AC)/3.
CA+OB+OC=(3CB+3BA+3AC)/3=CC=0.
充分性证明:如图:OA={-x,-y}.OB={a-x.-y}.OC={b-x,c-y}.
OA+OB+OC={-x+a-x+b-x,-y-y+c-y}=0
-x+a-x+b-x=0.x=(a+b)/3.,-y-y+c-y=0,y=c/3.即O((a+b)/3,c/3)
请 564663878 朋友 自己验证.O((a+b)/3,c/3)正是⊿ABC的重心.

看了 已知O是△ABC的内一点,求...的网友还看了以下:
第二次 makefile 提示 make:`myapp' is up to date,myapp 2020-05-16 …
如图所示是一个指甲刀的示意图,它是由三个杠杆AOB、O′A′B和O′CB′组成,在用指甲刀时,下面 2020-06-15 …
如图,一个用斜二测法画出的水平放置的平面直观图,是一个直角梯形,O′A=5,AB=2,BD=3,∠ 2020-06-27 …
如图所示,三个小球从同一高度处的O点分别以水平初速度v1、v2、v3抛出,落在水平面上的位置分别是 2020-07-21 …
如图所示,三个小球从同一高度的O点分别以初速度v1、v2、v3平抛,落在水平面上的位置分别是A、B 2020-07-30 …
如图,有点O,O'和三角形ABC三角形A'B'C',满足下列条件:向量OA=a向量,向量OB=b向 2020-08-01 …
阅读下面材料:在数学课上,老师提出如下问题:尺规作如图1:作∠A'O'B'=∠AOB.已知:∠AOB 2020-11-06 …
在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下:作法:(1)如图所示,以点O为圆心,任意 2020-11-06 …
已知,∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)以为圆心,为半径画弧. 2020-11-06 …
在x轴上电场强度E与x的关系如图所示,O为坐标原点,a,c为x轴上的点,a,c之间的距离为d,a,c 2020-12-20 …