早教吧 育儿知识 作业答案 考试题库 百科 知识分享

sin(a+兀/3)+sina=-4根号3/5,-兀/2<a<0,则cosa

题目详情
sin(a+兀/3)+sina=-4根号3/5,-兀/2<a<0,则cosa
▼优质解答
答案和解析
解析:
已知sin(a+兀/3)+sina=-4根号3/5,那么:
sina*cos(π/3)+cosa*sin(π/3)+sina=-4根号3/5
(3/2)*sina+cosa*(根号3/2)=-4根号3/5
(根号3/2)*sina+cosa*(1/2)=-4/5
sina*cos(π/6)+cosa*sin(π/6)=-4/5
即得:sin(a+π/6)=-4/5
因为-π/2<a<0,那么:-π/3<a+π/6<π/6
所以由sin(a+π/6)=-4/5<0,可知角a+π/6是第四象限角
那么:cos(a+π/6)>0
所以解得:cos(a+π/6)=根号[1-sin²(a+π/6)]=3/5
那么:cosa
=cos[(a+π/6)-π/6]
=cos(a+π/6)*cos(π/6)+ sin(a+π/6)*sin(π/6)
=(3/5)*(根号3/2) + (-4/5)*(1/2)
=(3根号3 -4)/10