早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知二次函数y=a(x的平方)-2ax+m的图像与x轴交于点A(-1,0)B两点,与y轴正半轴交于点C,且OC的平方=OA•OB,求抛物线的解析式.

题目详情
已知二次函数y=a(x的平方)-2ax+m的图像与x轴交于点A(-1,0)B两点,与y轴正半轴交于点C,且OC的平方=
OA•OB,求抛物线的解析式.
▼优质解答
答案和解析
已知二次函数y=a(x的平方)-2ax+m的图像与x轴交于点A(-1,0)B两点,与y轴正半轴交于点C,且OC的平方=OA•OB,求抛物线的解析式.
解析:∵二次函数f(x)=ax^2-2ax+m的图像与x轴交于点A(-1,0),B两点,且与y轴正半轴交于点C
f(x)=ax^2-2ax+m=a(x-1)^2+m-a
∴f(x)图像的对称轴为x=1==>B点坐标为(1+(1-(-1)),0)=(3,0)
∵OC^2=OA•OB=1*3,∴OC=√3
f(0)=m=√3
f(-1)=3a+m=0==>a=-√3/3
∴f(x)=-√3/3x^2+2√3/3x+√3;