早教吧作业答案频道 -->英语-->
英语翻译1.由于我们的粗枝大叶(oversight),开立的信用证有错误很抱歉2.今天早晨已通过我方银行修改了第1125号信用证3.我方须货甚急,望即准备装运4.倘若这批船货到达后,买主觉得很满意,很可
题目详情
英语翻译
1.由于我们的粗枝大叶(oversight),开立的信用证有错误
很抱歉
2.今天早晨已通过我方银行修改了第1125号信用证
3.我方须货甚急,望即准备装运
4.倘若这批船货到达后,买主觉得很满意,很可能将续订.
将这些翻成一篇作文!
1.由于我们的粗枝大叶(oversight),开立的信用证有错误
很抱歉
2.今天早晨已通过我方银行修改了第1125号信用证
3.我方须货甚急,望即准备装运
4.倘若这批船货到达后,买主觉得很满意,很可能将续订.
将这些翻成一篇作文!
▼优质解答
答案和解析
1.We are so sorry that the L/C applied by us was something wrong due to our oversight.
2. This morning we modified the L/C No. 1125 through our bank.
3. We are in urgent necessary of the goods, and hope you prepare to deliver them immediately.
4. If the buyer are satisfied with the goods after it is shipped to the destination port, he will give another orders probably.
2. This morning we modified the L/C No. 1125 through our bank.
3. We are in urgent necessary of the goods, and hope you prepare to deliver them immediately.
4. If the buyer are satisfied with the goods after it is shipped to the destination port, he will give another orders probably.
看了 英语翻译1.由于我们的粗枝大...的网友还看了以下:
假设n是2以上的整数,某自然数(1以上的整数)乘上n所得的数称为n的乘数,那么请回答以下问题:(1 2020-06-12 …
当x>1,证明2√x>3-1/x 2020-06-14 …
贯:1.贯通2.连贯3.旧时的制钱,用绳子穿上,每一个叫一贯4.事例,成例一仍旧“贯”()腰缠万" 2020-07-11 …
全神贯注的贯是什么意思.1.贯通2.连贯3.旧时的制钱4.姓 2020-07-11 …
1+1/2+1/3……+1/n,(n>1)证S(2^n)>1+n/2(n>=2,n属于N*)已知S 2020-07-22 …
设递增数列{an}满足a1=1,4an+1=5an+√9an^2+16(n∈N+)(1)求数列{a 2020-07-30 …
1.证明√2是无理数2.计算(√6+√2)(√3-2)√(√3+2)3.证明方程X2-2PX+P2 2020-08-02 …
狠狠狠狠狠狠狠狠难.xyz是正数1.证Σ[X^2/(Y^2+Z^2+YZ)]大于等于12.X+Y+Z 2020-10-31 …
高2英语单词1证实2不断地3资历4非法5有益的 2020-12-07 …
已知双曲线过右焦点F2的直线与右支交于A、B两点.(1)证明:;(2)设当直线AB的斜率时求的取值范 2021-01-23 …