早教吧作业答案频道 -->数学-->
假设n是2以上的整数,某自然数(1以上的整数)乘上n所得的数称为n的乘数,那么请回答以下问题:(1)证明2个连续自然数的积不是n的乘数(2)证明n个连续自然数的积不是n的乘数
题目详情
假设n是2以上的整数,某自然数(1以上的整数)乘上n所得的数称为n的乘数,那么请回答以下问题:
(1)证明2个连续自然数的积不是n的乘数
(2)证明n个连续自然数的积不是n的乘数
(1)证明2个连续自然数的积不是n的乘数
(2)证明n个连续自然数的积不是n的乘数
▼优质解答
答案和解析
证明:(I)原问题即证k(k+1)=m^n不成立,其中k,m∈N+
使用反证法
∵任意正整数均可以表示成不同质数的乘积,∴不妨设m=(p1^s1)(p2^s2)(p3^s3)...(px^sx),其中pi(i=1,2,3...x)为从2开始的质数,si∈N+
又∵k与k+1均是m的约数,
∴我们可以认为k是取qi个pi相乘所得的数,而k+1是取(nsi-qi)个pi相乘所得的数,其中i=1,2,3...x且qi=0,1,2,3...nsi
也即k=(p1^qi)(p2^q2)(p3^q3)...(px^qx),
k+1=[p1^(ns1-q1)][p2^(ns2-q2)][p3^(ns3-q3)]...[px^(nsx-qx)]=(p1^qi)(p2^q2)(p3^q3)...(px^qx)+1 ①
在①中,对pi而言,若qi与nsi-qi不同时为0,
则pi|(p1^qi)(p2^q2)(p3^q3)...(px^qx),∴pi\(p1^qi)(p2^q2)(p3^q3)...(px^qx)+1,其中“|”和“\”表示整除与不整除
又pi|[p1^(ns1-q1)][p2^(ns2-q2)][p3^(ns3-q3)],矛盾
∴qi与nsi-qi必有一个为0,∴k和k+1必为某两个整数的n次方,设k=r^n,k+1=t^n,这里r,t∈N+,rt=m
则r^n+1=t^n ②
又∵(t-r)|1=t^n-r^n,∴t-r=1
但此时②不可能成立,矛盾
∴假设不成立,即证
(II)原问题即证k(k+1)(k+2)...(k+n-1)=m^n ③不成立,其中k,m∈N+
依旧使用反证法
∵k^n<k(k+1)(k+2)...(k+n-1)<(k+n-1)^n
∴k+1≤m≤k+n-2
又∵m∈N+,∴不妨设m=k+p,其中1≤p≤n-2,p∈N+
在③中,显然(k+p+1)|k(k+1)(k+2)...(k+n-1)
但∵相邻两整数互质,即(k+p+1)\(k+p),∴(k+p+1)\(k+p)^n,矛盾
∴假设不成立,即证
使用反证法
∵任意正整数均可以表示成不同质数的乘积,∴不妨设m=(p1^s1)(p2^s2)(p3^s3)...(px^sx),其中pi(i=1,2,3...x)为从2开始的质数,si∈N+
又∵k与k+1均是m的约数,
∴我们可以认为k是取qi个pi相乘所得的数,而k+1是取(nsi-qi)个pi相乘所得的数,其中i=1,2,3...x且qi=0,1,2,3...nsi
也即k=(p1^qi)(p2^q2)(p3^q3)...(px^qx),
k+1=[p1^(ns1-q1)][p2^(ns2-q2)][p3^(ns3-q3)]...[px^(nsx-qx)]=(p1^qi)(p2^q2)(p3^q3)...(px^qx)+1 ①
在①中,对pi而言,若qi与nsi-qi不同时为0,
则pi|(p1^qi)(p2^q2)(p3^q3)...(px^qx),∴pi\(p1^qi)(p2^q2)(p3^q3)...(px^qx)+1,其中“|”和“\”表示整除与不整除
又pi|[p1^(ns1-q1)][p2^(ns2-q2)][p3^(ns3-q3)],矛盾
∴qi与nsi-qi必有一个为0,∴k和k+1必为某两个整数的n次方,设k=r^n,k+1=t^n,这里r,t∈N+,rt=m
则r^n+1=t^n ②
又∵(t-r)|1=t^n-r^n,∴t-r=1
但此时②不可能成立,矛盾
∴假设不成立,即证
(II)原问题即证k(k+1)(k+2)...(k+n-1)=m^n ③不成立,其中k,m∈N+
依旧使用反证法
∵k^n<k(k+1)(k+2)...(k+n-1)<(k+n-1)^n
∴k+1≤m≤k+n-2
又∵m∈N+,∴不妨设m=k+p,其中1≤p≤n-2,p∈N+
在③中,显然(k+p+1)|k(k+1)(k+2)...(k+n-1)
但∵相邻两整数互质,即(k+p+1)\(k+p),∴(k+p+1)\(k+p)^n,矛盾
∴假设不成立,即证
看了 假设n是2以上的整数,某自然...的网友还看了以下:
求证:√2不是有理数?假设√2是有理数则√2可以写成一个最简分数假设是p/q=√2,p和q互质平方 2020-04-09 …
一个宏观经济学的问题!在一个三部门经济中,税收采用定量税形式,T=T0.如果假设货币需求函数是L= 2020-06-20 …
某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总人数比去年 2020-07-09 …
新制氯水能使红色布条退色,对于使红色布条退色的物质,同学们的看法不一致,认为氯水中存在的几种微粒都 2020-07-14 …
某个命题的结论为“x,y,z三个数中至少有一个为正数”,现用反证法证明,假设正确的是()A.假设三 2020-08-01 …
考研数学中的证明题~假设辅助函数的问题~考研数学中的证明题~如果根据题设~假设一个函数~这个函数完 2020-08-02 …
{求助}有一列数(假设只有10个),比如28,216,15,450,19,152等,请用Excel函 2020-11-01 …
英语作文假设你叫卫宁,寒假即将来临,你和家人计划去澳大利亚度假.请根据下面的提示内容写一篇约英语作文 2020-11-13 …
某同学发现,上个月做实验用的氢氧化钠溶液忘记盖瓶盖,对于该溶液是否变质,同学们提出了如下假设假设1: 2020-11-14 …
用反证法证明:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理数根,那么a、b、c中至少有一 2021-02-02 …