早教吧作业答案频道 -->数学-->
设A为n阶实对称矩阵,证明:秩(A)=n的充分必要条件为存在一个n阶实矩阵B,使AB+BTA是正定矩阵.
题目详情
设A为n阶实对称矩阵,证明:秩(A)=n的充分必要条件为存在一个n阶实矩阵B,使AB+BTA是正定矩阵.
▼优质解答
答案和解析
“必要性”(⇐)
利用反证法进行证明.
反设:r(A)<n,则|A|=0.
于是λ=0是A的特征值,
假设相应的特征向量为x,即:Ax=0(x≠0),
所以:xTAT=0.
从而:xT(AB+BTA)x=xTABx+xTBTAx=0,
与AB+BTA是正定矩阵矛盾,故假设不成立.
所以,秩(A)=n.
“充分性”(⇒)
因为 r(A)=n,
所以A的特征值λ1,λ2,…,λn全不为0.
取矩阵B=A,则:AB+BTA=AA+AA=2A2,
它的特征值为:2λ12,2λ22,…,2λn2全部为正,
所以AB+BTA是正定矩阵.
“必要性”(⇐)
利用反证法进行证明.
反设:r(A)<n,则|A|=0.
于是λ=0是A的特征值,
假设相应的特征向量为x,即:Ax=0(x≠0),
所以:xTAT=0.
从而:xT(AB+BTA)x=xTABx+xTBTAx=0,
与AB+BTA是正定矩阵矛盾,故假设不成立.
所以,秩(A)=n.
“充分性”(⇒)
因为 r(A)=n,
所以A的特征值λ1,λ2,…,λn全不为0.
取矩阵B=A,则:AB+BTA=AA+AA=2A2,
它的特征值为:2λ12,2λ22,…,2λn2全部为正,
所以AB+BTA是正定矩阵.
看了 设A为n阶实对称矩阵,证明:...的网友还看了以下:
(1)A、B均为n阶实对称正定矩阵,证明A-B正定则B^(-1)-A^(-1)亦正定(2)A、(1 2020-05-13 …
设A是n阶实对称矩阵,A^2=A,证明存在正交矩阵.设A是n阶实对称矩阵,A^2=A,证明存在正交 2020-05-15 …
若A是对称矩阵,T是正交矩阵,证明T^-1*AT是对称矩阵. 2020-06-14 …
A是一个n阶实对称矩阵,证明:一定存在n阶正交阵T,使得T逆AT为对角阵,问T与对角阵是否唯一? 2020-06-18 …
设A是实对称矩阵,则A与哪些条件等价?下面的对吗,怎么证明的呢?设A是实对称矩阵,则下列条件等价: 2020-06-22 …
设a是n阶实対称矩阵,a^2=a.证明存在正交矩阵t.使得t^-1at=diag(1,1.1,0. 2020-07-16 …
设a是n阶实対称矩阵,a^2=a.证明存在正交矩阵t.使得t^-1at=diag(1,1.1,0. 2020-07-16 …
矩阵分析证明,(实反对称矩阵)A是实反对称矩阵,则对R^n中的任一向量a,有(a^T)Aa=0.( 2020-07-21 …
设矩阵,称为函数的系数矩阵,其中b,d≠0,矩阵A相应的行列式|A|≠0.设,an+1=f(an) 2020-08-02 …
高等代数实对称矩阵A化对角矩阵在欧式空间讲的那一节,说存在一个可逆又正交的矩阵T使得A变成对角形!所 2020-12-21 …