如图,AB是半径为4的O的直径,P是圆上异于A,B的任意一点,∠APB的平分线交O于点C,连接AC和BC,△ABC的中位线所在的直线与O相交于点E、F,则EF的长是()A.43B.23C.6D.25
如图,AB是半径为4的 O的直径,P是圆上异于A,B的任意一点,∠APB的平分线交 O于点C,连接AC和BC,△ABC的中位线所在的直线与 O相交于点E、F,则EF的长是( )
A. 43
B. 23
C. 6
D. 25

∵PC是∠APB的角平分线,
∴∠APC=∠CPB,
∴弧AC=弧BC;
∴AC=BC;
∵AB是直径,
∴∠ACB=90°.
即△ABC是等腰直角三角形.
连接OC,交EF于点D,则OC⊥AB;
∵MN是△ABC的中位线,
∴MN∥AB;
∴OC⊥EF,OD=
| 1 |
| 2 |
连接OE,根据勾股定理,得:DE=
| 42-22 |
| 3 |
∴EF=2ED=4
| 3 |
故选:A.
设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f 2020-04-26 …
设f(x)在[a,b]上连续,在(a,b)内可导,且当x∈(a,b)时,f(x)≠0.若f(a)= 2020-05-14 …
已知f(X)=Lg1-X/1+X,a,b属于(-1,1)求证:f(a)+f(B)=F(A+B)/1 2020-05-22 …
高数题目设f(x)在[a,b]上可导,又f'(x)+[f(x)]^2-∫(a到x)f(t)dt=0 2020-06-12 …
针对程序段:IF(A||B||C)THENW=W/X,对于(A,B,C)的取值,(57)测试用例能 2020-07-10 …
已知f(x)在区间(﹣∞,+∞)上是减函数,a,b∈R,且a+b≤0,则下列正确的是?A.f(a) 2020-07-14 …
设映射f:X→Y,A包含于X,B包含于X.证明:f(A∩B)包含于f(A)∩f(B).我的证明是这样 2020-11-01 …
儿子的两道习题及解答理解不了,不知道什么涵义,求详解1.若对于一切实数a,b均有f(ab)=f(a) 2020-11-21 …
已知f(x)在R上是增函已知f(x)在R上是增函数,a,b∈R,且a+b≤0,则有[]A、f(a)+ 2020-12-08 …
1)设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明:在(a,b)内存在一点ξ,使f'( 2020-12-28 …