早教吧作业答案频道 -->其他-->
(1)已知:如图1,四边形ABCD内接于⊙O,延长BC至E.求证:∠A+∠BCD=180°,∠DCE=∠A.(2)依已知条件和(1)中的结论:①如图2,若点C在⊙O外,且A、C两点分别在直线BD的两侧.试确定∠A+
题目详情
(1)已知:如图1,四边形ABCD内接于⊙O,延长BC至E.求证:∠A+∠BCD=180°,∠DCE=∠A.
(2)依已知条件和(1)中的结论:
①如图2,若点C在⊙O外,且A、C两点分别在直线BD的两侧.试确定∠A+∠BCD与180°的大小关系;
②如图3,若点C在⊙O内,且A、C两点分别在直线BD的两侧.试确定∠A+∠BCD与180°的大小关系.

(2)依已知条件和(1)中的结论:
①如图2,若点C在⊙O外,且A、C两点分别在直线BD的两侧.试确定∠A+∠BCD与180°的大小关系;
②如图3,若点C在⊙O内,且A、C两点分别在直线BD的两侧.试确定∠A+∠BCD与180°的大小关系.

▼优质解答
答案和解析
(1)连接AC,BD,
则:∠1=∠4,∠2=∠7,∠3=∠6,∠5=∠8,
∴∠BAD+∠ABC+∠BCD+∠CDA=∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=2(∠1+∠2+∠5+∠6)=360°,
∴∠1+∠2+∠5+∠6=180°,
∴∠A+∠BCD=180°;
∵∠DCE+∠BCD=180°,
∴∠DCE=∠A;

(2)①连接DE,
∵∠A+∠BED=180°,∠BDE>∠BCD,
∴∠A+∠BCD<180°;
②延长DC交⊙O于点E,连接BE,
∵∠A+∠E=180°,∠BCD>∠E,
∴∠A+∠BCD>180°.
则:∠1=∠4,∠2=∠7,∠3=∠6,∠5=∠8,
∴∠BAD+∠ABC+∠BCD+∠CDA=∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=2(∠1+∠2+∠5+∠6)=360°,
∴∠1+∠2+∠5+∠6=180°,
∴∠A+∠BCD=180°;
∵∠DCE+∠BCD=180°,
∴∠DCE=∠A;

(2)①连接DE,
∵∠A+∠BED=180°,∠BDE>∠BCD,
∴∠A+∠BCD<180°;
②延长DC交⊙O于点E,连接BE,
∵∠A+∠E=180°,∠BCD>∠E,
∴∠A+∠BCD>180°.
看了 (1)已知:如图1,四边形A...的网友还看了以下:
下列说法,正确的有:A 延长直线AB B 延长线段BC C 延长射线OA D 画直线 在射线AB上 2020-05-15 …
(b-a)(a-c)(c-b)=-[(-b+a)(-a+c)(-c+b)]对吧 也就是在(b-a) 2020-05-16 …
分解因式(a-b-c)(a+b-c)-(b-c-a)(b+c-a)正确答案是这个:(a+b-c)( 2020-05-17 …
初中数学c/(c-b)=-c(a-b)/(b-c)(a-b)c/(c-b)=-c(a-b)/(b- 2020-06-06 …
下列能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠C=∠C′B.∠B 2020-07-14 …
用公式法化简逻辑函数F=AB+A'C+B'CF=AB+A'C+B'C=AB+A'C(B+B’)+B 2020-08-01 …
用C(A)表示非空集合A中的元素个数,定义A*B=C(A)-C(B),当C(A)≥C(B)C(B) 2020-08-01 …
已知正数abc,且a/b+c=b/c+a=c/a+b=k.则在下列四个点中,在正比例函数y=kx图像 2020-11-01 …
如图三条曲线表示C、Si和P元素的四级电离能变化趋势.下列说法正确的是()A.电负性:c>b>aB. 2020-11-11 …
已知在三角形ABC中,角C大于角B,AD垂直BC于D,AE评分角BAC.1求证角EAD=二分之一(角 2020-12-09 …