早教吧作业答案频道 -->其他-->
如图1,在平面直角坐标系中,P(2,2),点A、B分别在x轴正半轴和y轴负半轴上,且PA=PB.(1)求证:PA⊥PB;(2)若点A(8,0),求点B的坐标;(3)当点B在y轴负半轴上运动时,求OA-OB的值
题目详情
如图1,在平面直角坐标系中,P(2,2),点A、B分别在x轴正半轴和y轴负半轴上,且PA=PB.
(1)求证:PA⊥PB;
(2)若点A(8,0),求点B的坐标;
(3)当点B在y轴负半轴上运动时,求OA-OB的值;
(4)如图2,若点B在y轴正半轴上运动时,直接写出OA+OB的值.
(1)求证:PA⊥PB;
(2)若点A(8,0),求点B的坐标;
(3)当点B在y轴负半轴上运动时,求OA-OB的值;
(4)如图2,若点B在y轴正半轴上运动时,直接写出OA+OB的值.

▼优质解答
答案和解析
(1)证明:如图1,过点P作PE⊥x轴于E,作PF⊥y轴于F,
∵P(2,2),
∴PE=PF=2,
在Rt△APE和Rt△BPF中,
,
∴Rt△APE≌Rt△BPF(HL),
∴∠APE=∠BPF,
∴∠APB=∠APE+∠BPE=∠BPF+∠BPE=∠EPF=90°,
∴PA⊥PB;
(2)易得四边形OEPF是正方形,
∴OE=OF=2,
∵A(8,0),
∴OA=8,
∴AE=OA-OE=8-2=6,
∵Rt△APE≌Rt△BPF,
∴AE=BF=6,
∴OB=BF-OF=6-2=4,
∴点B的坐标为(0,-4);
(3)∵Rt△APE≌Rt△BPF,
∴AE=BF,
∵AE=OA-OE=OA-2,
BF=OB+OF=OB+2,
∴OA-2=OB+2,
∴OA-OB=4;
(4)如图2,过点P作PE⊥x轴于E,作PF⊥y轴于F,
同(1)可得,Rt△APE≌Rt△BPF,
∴AE=BF,
∵AE=OA-OE=OA-2,
BF=OF-OB=2-OB,
∴OA-2=2-OB,
∴OA+OB=4.
∵P(2,2),
∴PE=PF=2,
在Rt△APE和Rt△BPF中,
|
∴Rt△APE≌Rt△BPF(HL),
∴∠APE=∠BPF,
∴∠APB=∠APE+∠BPE=∠BPF+∠BPE=∠EPF=90°,
∴PA⊥PB;
(2)易得四边形OEPF是正方形,
∴OE=OF=2,
∵A(8,0),

∴OA=8,
∴AE=OA-OE=8-2=6,
∵Rt△APE≌Rt△BPF,
∴AE=BF=6,
∴OB=BF-OF=6-2=4,
∴点B的坐标为(0,-4);
(3)∵Rt△APE≌Rt△BPF,
∴AE=BF,
∵AE=OA-OE=OA-2,
BF=OB+OF=OB+2,
∴OA-2=OB+2,
∴OA-OB=4;
(4)如图2,过点P作PE⊥x轴于E,作PF⊥y轴于F,
同(1)可得,Rt△APE≌Rt△BPF,
∴AE=BF,
∵AE=OA-OE=OA-2,
BF=OF-OB=2-OB,
∴OA-2=2-OB,
∴OA+OB=4.
看了 如图1,在平面直角坐标系中,...的网友还看了以下:
(2004•香坊区一模)如图,⊙O是Rt△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=0 2020-05-13 …
旋转解析式在直角坐标系中,△ABO的顶点A坐标为(6,0),AB=8,∠BAO=60°,请做出△A 2020-05-20 …
如图,AB切O于点B,AD交O于点C和点D,点E为DC的中点,连接OE交CD于点F,连接BE交CD 2020-07-09 …
已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E 2020-07-09 …
1.点P为圆O外一点,PS、PT是两条切线,过点P作圆O的割线PAB,交圆O于A,B两点,与ST交 2020-07-31 …
如图所示,已知PA切圆O于A,割线PBC交圆O于B、C,PD⊥AB于D,PD与AO的延长线相交于点 2020-07-31 …
点A.B.C.D.E在圆上,且弧AB=弧BC=弧CD=弧DE=弧EA,求证五边形ABCDE是圆O点 2020-08-03 …
已知,如图,P是⊙O外一点,PC切⊙O于点C,割线PO交⊙O于点B、A,且AC=PC.(1)求证:△ 2020-12-05 …
跪求:圆的切线问题,这道几何题怎么证?PA,PB切圆O于A,B,链接PO并延长交圆O于N,交AB与M 2020-12-05 …
已知O(0,0),A(2,1),O,A,B,C依逆时针方向构成正方形的四个顶点.(1)求B,C两点的 2020-12-21 …