早教吧作业答案频道 -->其他-->
(2013•盐城三模)已知数列{an}的通项公式为an=-n+p,数列{bn}的通项公式为bn=2n-5.设cn=an,an≤bnbn,an>bn,若在数列{cn}中,c8>cn(n∈N*,n≠8),则实数p的取值范围是.
题目详情
(2013•盐城三模)已知数列{an}的通项公式为an=-n+p,数列{bn}的通项公式为bn=2n-5.设cn=
,若在数列{cn}中,c8>cn(n∈N*,n≠8),则实数p的取值范围是______.
|
▼优质解答
答案和解析
当an≤bn时,cn=an,当an>bn时,cn=bn,∴cn是an,bn中的较小者,
因为an=-n+p,所以{an}是递减数列;因为bn=2n-5,所以{bn}是递增数列,
因为c8>cn(n≠8),所以c8是cn的最大者,
则n=1,2,3,…7,8时,cn递增,n=8,9,10,…时,cn递减,
因此,n=1,2,3,…7时,2n-5<-n+p总成立,
当n=7时,27-5<-7+p,∴p>11,
n=9,10,11,…时,2n-5>-n+p总成立,
当n=9时,29-5>-9+p,成立,∴p<25,
而c8=a8或c8=b8,
若a8≤b8,即23≥p-8,所以p≤16,
则c8=a8=p-8,
∴p-8>b7=27-5,∴p>12,
故12<p≤16,
若a8>b8,即p-8>28-5,所以p>16,
∴c8=b8=23,
那么c8>c9=a9,即8>p-9,
∴p<17,
故16<p<17,
综上,12<p<17.
故答案为:(12,17).
因为an=-n+p,所以{an}是递减数列;因为bn=2n-5,所以{bn}是递增数列,
因为c8>cn(n≠8),所以c8是cn的最大者,
则n=1,2,3,…7,8时,cn递增,n=8,9,10,…时,cn递减,
因此,n=1,2,3,…7时,2n-5<-n+p总成立,
当n=7时,27-5<-7+p,∴p>11,
n=9,10,11,…时,2n-5>-n+p总成立,
当n=9时,29-5>-9+p,成立,∴p<25,
而c8=a8或c8=b8,
若a8≤b8,即23≥p-8,所以p≤16,
则c8=a8=p-8,
∴p-8>b7=27-5,∴p>12,
故12<p≤16,
若a8>b8,即p-8>28-5,所以p>16,
∴c8=b8=23,
那么c8>c9=a9,即8>p-9,
∴p<17,
故16<p<17,
综上,12<p<17.
故答案为:(12,17).
看了 (2013•盐城三模)已知数...的网友还看了以下:
利用等比数列的前n项和的公式证明:如果a不等于b,且a,b都不为0,则a^n+a^(n-1)b+a 2020-05-13 …
利用等比数列的前n项和的公式证明a^n+a^(n+1)×b+a^(n-2)×b^2+…+b^n=〔 2020-05-13 …
在数列{a(n)},{b(n)}中,a(1)=2,b(1)=4,且a(n),b(n),a(n+1) 2020-05-22 …
billion是读成“不要脸”吗?billion到底该怎么读?million的音标是:美['mɪl 2020-06-10 …
高一数学集合A中有m个元素,集合B中有n个元素,从A到B若集合A中有m个元素,集合B中有n个元素, 2020-07-30 …
什么是二项式的通式?在二项式定理(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+ 2020-07-31 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
在下列说法中,①算法的三种基本结构是顺序结构、分支结构、循环结构;②“若a>1且b>1,则a+b>2 2020-12-21 …
设f:M→N是集合M到集合N的映射,下列说法正确的是()A.M中每一个元素在N中必有输出值B.N中每 2020-12-31 …
设f:M→N是集合M到集合N的映射,下列说法正确的是()A.M中每一个元素在N中必有输出值B.N中每 2020-12-31 …