早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在△ABC中,角A,B,C所对的边长分别为a,b,c,设命题p:asinB=bsinC=csinA,命题q:△ABC是等边三角形,那么命题p是命题q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分

题目详情
在△ABC中,角A,B,C所对的边长分别为a,b,c,设命题p:
a
sinB
=
b
sinC
=
c
sinA
,命题q:△ABC是等边三角形,那么命题p是命题q的(  )
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
▼优质解答
答案和解析
先看充分性,当
a
sinB
=
b
sinC
=
c
sinA
成立时,
由正弦定理,可得
a
b
=
b
c
=
c
a
,解之得a=b=c,
因此△ABC是等边三角形,即命题q成立,故充分性成立;
再看必要性,若△ABC是等边三角形,则a=b=c且A=B=C=
π
3

由此可得
a
sinB
=
b
sinC
=
c
sinA
成立,即命题p成立,故必要性成立.
因此,命题p是命题q的充要条件.
故选:C