早教吧作业答案频道 -->数学-->
设{an}是等差数列,{bn}是各项都为正数的等比数列且a1=b1=1,a3+b5=21,a5+b3=13
题目详情
设{an}是等差数列,{bn}是各项都为正数的等比数列且a1=b1=1,a3+b5=21,a5+b3=13
▼优质解答
答案和解析
(1)
因为a3+b5=21,a5+b3=13,{an}是等差数列,{bn}是等比数列
所以a1+2d+b1*q^4=21,a1+4d+b1*q^2=13
因为a1=b1=1
所以2d+q^4=20,4d+q^2=12
2d+q^4=20方程乘以2得4d+2*q^4=40
用4d+2*q^4=40减去4d+q^2=12得2*q^4-q^2-28=0即(2*q^2+7)*(q^2-4)=0
所以2*q^2=-7或q^2=4
当2*q^2=-7时q^2=-3.5(不符合,舍去)
当q^2=4时q=2或-2
因为bn}是各项都为正数的等比数列
所以q=2
综上所述得q=2
带入4d+q^2得d=2
所以 an=2n-1
bn=2^(n-1)
(2)
an/bn=(2n-1)/2^(n-1) 叠加
a1/b1=1
a2/b2=3/2
……
sn=1+3/2+5/4+7/8+……(2n-1)/2^(n-1).(1)
2sn=2+3+……+(2n-1)/2^(n-2).(2)
(2)-(1),得 sn=6-(4n+6)/(2^n)
因为a3+b5=21,a5+b3=13,{an}是等差数列,{bn}是等比数列
所以a1+2d+b1*q^4=21,a1+4d+b1*q^2=13
因为a1=b1=1
所以2d+q^4=20,4d+q^2=12
2d+q^4=20方程乘以2得4d+2*q^4=40
用4d+2*q^4=40减去4d+q^2=12得2*q^4-q^2-28=0即(2*q^2+7)*(q^2-4)=0
所以2*q^2=-7或q^2=4
当2*q^2=-7时q^2=-3.5(不符合,舍去)
当q^2=4时q=2或-2
因为bn}是各项都为正数的等比数列
所以q=2
综上所述得q=2
带入4d+q^2得d=2
所以 an=2n-1
bn=2^(n-1)
(2)
an/bn=(2n-1)/2^(n-1) 叠加
a1/b1=1
a2/b2=3/2
……
sn=1+3/2+5/4+7/8+……(2n-1)/2^(n-1).(1)
2sn=2+3+……+(2n-1)/2^(n-2).(2)
(2)-(1),得 sn=6-(4n+6)/(2^n)
看了 设{an}是等差数列,{bn...的网友还看了以下:
数列{an}首项为1,且数列前n项和满足3mSn=(5m-2)Sn-1+3m(1)求证数列为等比数 2020-05-13 …
已知等差数列{an}的项数为偶数,且公差d=1,且奇数的和为44,偶数项的和为33,则此数列的中间 2020-05-15 …
数列{an}各项是1或3,且在第k个1和第k+1个1之间有2k-1个3,即1,3,1,3,3,3, 2020-05-16 …
等差数列an的首项是a1=1,公差d>0,且第二项,第五项,第十四项已知等差数列{an}的首项a1 2020-05-21 …
高考若数列{an}满足,a1=1,且a(n+1)=an/(1+an),设数列{bn}的前n项和为S 2020-05-22 …
要说明为什么选该项……1下列各句文学常识的表述,不正确的:A柳宗元,字子厚,祖籍河东人,因官至柳州 2020-06-09 …
若数列的第n项等于第n+1项加上第n+1项的倒数,且首相为2,求数列通项若数列的第n项等于第n+1 2020-07-30 …
已知a>0且a≠1,数列{an}是首项为a,公比为a的等比数列(很急!)已知a>0且a≠1,数列{ 2020-07-30 …
一、选择题(每小题只有—个正确选项)1.下列有关宇宙的描述错误的是()。A.宇宙是有起源的B.宇宙是 2020-11-04 …
1.数列an满足a1=1,且Sn=2an+n,求数列an的通项公式.1.数列an满足a1=1,且Sn 2020-12-05 …