早教吧作业答案频道 -->数学-->
若(1-2x)^5=a0+a1(x-1)+a2(x-1)^2+.+a5(x-1)^5,则a1+2a2+3a3+4a4+5a5=?
题目详情
若(1-2x)^5=a0+a1(x-1)+a2(x-1)^2+.+a5(x-1)^5,
则a1+2a2+3a3+4a4+5a5=?
则a1+2a2+3a3+4a4+5a5=?
▼优质解答
答案和解析
(1-2x)^5=a0+a1(x-1)+a2(x-1)^2+.+a5(x-1)^5
则设f(x)=(1-2x)^5
求导数得:
f'(x)=5[(1-2x)^4]*(-2)=-10(1-2x)^4
且f'(x)=a1+2a2(x-1)+3a3(x-1)^2+4a4(x-1)^3+5a5(x-1)^4
令x=2
则:(1-2*2)^4=a1+2a2+3a3+4a4+5a5
即:a1+2a2+3a3+4a4+5a5
=(-3)^4
=81
则设f(x)=(1-2x)^5
求导数得:
f'(x)=5[(1-2x)^4]*(-2)=-10(1-2x)^4
且f'(x)=a1+2a2(x-1)+3a3(x-1)^2+4a4(x-1)^3+5a5(x-1)^4
令x=2
则:(1-2*2)^4=a1+2a2+3a3+4a4+5a5
即:a1+2a2+3a3+4a4+5a5
=(-3)^4
=81
看了 若(1-2x)^5=a0+a...的网友还看了以下:
(1)2x3•(x3)2+(-3x3)3+(-4x)2•x7-5x•(-2x2)4;(2)(an− 2020-05-17 …
(x^2+1)(x-2)^9=a0+a1(x-1)+a2(x-1)^2+...+a11(x-1)^ 2020-06-03 …
若(1+x)+(1+x^2)+...+(1+x^n)=a1(x-1)+2a2(x-1)^2+... 2020-07-09 …
(1+x)+(1+x)^2+...+(1+x)^n=a1(x-1)+2a2(x-1)^2+...+ 2020-07-09 …
若(1-2x)^5=a0+a1(x-1)+a2(x-1)^2+.+a5(x-1)^5,则a1+2a 2020-07-09 …
若(1-2x)^5=a0+a1(x-1)+a2(x-1)^2+.+a5(x-1)^5,则a1+2a 2020-07-09 …
已知(1-2x)^7=a0+a1(x-1)+a2(x-1)^2+a3(x-3)^3+……+a7(x 2020-07-09 …
一条高中数学二项式定理已知(1+1/2x)^n展开式的各项依次记为a1(x),a2(x),a3(x 2020-07-31 …
计算:(1)(2)(-3a3)2•a3+(-4a)2•a7+(-5a3)3(3)(a-b)10÷(b 2020-10-31 …
已知(x+2)9=a0+a1x+a2x2+……+a9x9,则(a1+3a3+5a5+7a7+9a9) 2020-10-31 …