早教吧作业答案频道 -->数学-->
一条高中数学二项式定理已知(1+1/2x)^n展开式的各项依次记为a1(x),a2(x),a3(x).an(x),a(n+1)(x)设F(X)=a1(x)+2a2(x)+3a3(x).+nan(x)+(n+1)a(n+1)(x)1,若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值?2,求证:对任意
题目详情
一条高中数学二项式定理
已知(1+1/2x)^n展开式的各项依次记为a1(x),a2(x),a3(x).an(x),a(n+1)(x)设F(X)=a1(x)+2a2(x)+3a3(x).+nan(x)+(n+1)a(n+1)(x)
1,若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值?
2,求证:对任意x1,x2∈[0,2],恒有│F(X1)-F(X2)│≤(n+2)×2^(n-1)
Abraham 回答:0 人气:7 提问时间:2011-06-09 07:39
求第二问
已知(1+1/2x)^n展开式的各项依次记为a1(x),a2(x),a3(x).an(x),a(n+1)(x)设F(X)=a1(x)+2a2(x)+3a3(x).+nan(x)+(n+1)a(n+1)(x)
1,若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值?
2,求证:对任意x1,x2∈[0,2],恒有│F(X1)-F(X2)│≤(n+2)×2^(n-1)
Abraham 回答:0 人气:7 提问时间:2011-06-09 07:39
求第二问
▼优质解答
答案和解析
(1)n=1或n=8;
(2)【声明:我认为题目应为(1+(1/2)x)^n,而不是(1+1/(2x))^n否则X1与X2的定义域不可能包括0.解题如下:】
令f(x)=(1+1/2x)^n
要证明│F(X1)-F(X2)│≤(n+2)×2^(n-1),只需要证明│F(X1)-F(X2)│的最大值小于或者等于(n+2)×2^(n-1)即可,而显然,当X1=2,X2=0时│F(X1)-F(X2)│取最大值,且F(X1)-F(X2)为正数,即只需证明F(2)-F(0)≤(n+2)×2^(n-1)即可.此时F(X1)-F(X2)=F(2)-F(0).而F(0)=a1(x)=1.
当n=1时,F(2)-F(0)=1+2-1=2 假设当n=k-1的时候,不等式成立,即:F(k-1)(2)-F(0)≤)(k+1)×2^(k-2)
即:F(k-1)(2)=a(1)+2a(2)+3a(3)+……+(k-1)a(k-1)+ka(k)≤(k+1)×2^(k-2)+1,由杨辉三角的知识,不难得知:a(1)=a(k)=1(注:此处a(k)即ak(2),即k为序号,x=2的项,上面已经说明x为什么为2)
则,当n=k时,
F(K)(2)=1+2(a(1)+a(2))+3(a(2)+a(3))+4(a(3)+a(4))+……+k(a(k-1)+a(k))+(k+1)*1
(注:最两边的1即为杨辉三角中最两边的1)
=1+2a(1)+2a(2)+3a(2)+3a(3)+4a(3)+4a(4)+……+ka(k-1)+ka(k)+ka(k)+1
(注:即把上式展开,最后的ka(k)+1实质即k+1,上面已经说了a(1)=a(k)=1)
=1+2(a(1)+2a(2)+3a(3)+4a(4)+……+ka(k))+a(2)+a(3)+a(4)+……+a(k-1)+a
=a(1)+a(2)+a(3)+a(4)+……+a(k)+2F(k-1)(2)
=f(2)+2F(k-1)(2)
=2^n+2F(k-1)(2)
<=2^n+2(n+1)*2^(n-2)+2
=2^(n-1)*(2+n+1)+2
<=(n+2)*2^(n-1)+1
即F(K)(2)-F(0)<=(n+2)*2^(n-1)
即,当n>=2时,F(2)-F(0)≤(n+2)×2^(n-1).
证毕.
(2)【声明:我认为题目应为(1+(1/2)x)^n,而不是(1+1/(2x))^n否则X1与X2的定义域不可能包括0.解题如下:】
令f(x)=(1+1/2x)^n
要证明│F(X1)-F(X2)│≤(n+2)×2^(n-1),只需要证明│F(X1)-F(X2)│的最大值小于或者等于(n+2)×2^(n-1)即可,而显然,当X1=2,X2=0时│F(X1)-F(X2)│取最大值,且F(X1)-F(X2)为正数,即只需证明F(2)-F(0)≤(n+2)×2^(n-1)即可.此时F(X1)-F(X2)=F(2)-F(0).而F(0)=a1(x)=1.
当n=1时,F(2)-F(0)=1+2-1=2 假设当n=k-1的时候,不等式成立,即:F(k-1)(2)-F(0)≤)(k+1)×2^(k-2)
即:F(k-1)(2)=a(1)+2a(2)+3a(3)+……+(k-1)a(k-1)+ka(k)≤(k+1)×2^(k-2)+1,由杨辉三角的知识,不难得知:a(1)=a(k)=1(注:此处a(k)即ak(2),即k为序号,x=2的项,上面已经说明x为什么为2)
则,当n=k时,
F(K)(2)=1+2(a(1)+a(2))+3(a(2)+a(3))+4(a(3)+a(4))+……+k(a(k-1)+a(k))+(k+1)*1
(注:最两边的1即为杨辉三角中最两边的1)
=1+2a(1)+2a(2)+3a(2)+3a(3)+4a(3)+4a(4)+……+ka(k-1)+ka(k)+ka(k)+1
(注:即把上式展开,最后的ka(k)+1实质即k+1,上面已经说了a(1)=a(k)=1)
=1+2(a(1)+2a(2)+3a(3)+4a(4)+……+ka(k))+a(2)+a(3)+a(4)+……+a(k-1)+a
=a(1)+a(2)+a(3)+a(4)+……+a(k)+2F(k-1)(2)
=f(2)+2F(k-1)(2)
=2^n+2F(k-1)(2)
<=2^n+2(n+1)*2^(n-2)+2
=2^(n-1)*(2+n+1)+2
<=(n+2)*2^(n-1)+1
即F(K)(2)-F(0)<=(n+2)*2^(n-1)
即,当n>=2时,F(2)-F(0)≤(n+2)×2^(n-1).
证毕.
看了 一条高中数学二项式定理已知(...的网友还看了以下:
如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图.设1,2两组数据的平均数依次为.x1和. 2020-04-06 …
现有ABC三种短周期元素,元素次序依次递增有A、B、C三种短周期元素,原子序数依次递增,A与C的质 2020-04-08 …
在数列{an}中a1=1,从第二项起,每一项的差依次组成首项为2且公比为q(q>0)的等比数列.( 2020-05-21 …
定义:如果一个数列从第二项起,每一项与前一项的差依次构成一个等比数列,则称这个数列为差等比数列,如 2020-06-03 …
(1-1/2)*(1-1/3)*(1-1/4)*…*(1-1/100)一减去二分之一的差乘以一减去 2020-07-13 …
公务员的题?我怎么看不懂61、-1,-2,-1,9,47,()A.92B.85C.120D.150 2020-07-17 …
1、给定2×8的方格表中,依次填入1、2、3、4、5、6、7、8,如果再把1—8按适当的次序分别填入 2020-11-17 …
1等差数列的前4项依次是a-1,a+1,2a+3,2b-3,则a、b的值为2已知{an}为等差数列, 2020-11-18 …
(2010•闵行区一模)有甲、乙、丙、丁四人参加广州亚运会某项射击选拔赛的平均成绩依次是8.5、8. 2021-01-02 …
有甲、乙、丙、丁四人参加广州亚运会某项射击选拔赛的平均成绩依次是8.5、8.8、9.1、9.1,方差 2021-01-02 …