早教吧作业答案频道 -->数学-->
一条高中数学二项式定理已知(1+1/2x)^n展开式的各项依次记为a1(x),a2(x),a3(x).an(x),a(n+1)(x)设F(X)=a1(x)+2a2(x)+3a3(x).+nan(x)+(n+1)a(n+1)(x)1,若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值?2,求证:对任意
题目详情
一条高中数学二项式定理
已知(1+1/2x)^n展开式的各项依次记为a1(x),a2(x),a3(x).an(x),a(n+1)(x)设F(X)=a1(x)+2a2(x)+3a3(x).+nan(x)+(n+1)a(n+1)(x)
1,若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值?
2,求证:对任意x1,x2∈[0,2],恒有│F(X1)-F(X2)│≤(n+2)×2^(n-1)
Abraham 回答:0 人气:7 提问时间:2011-06-09 07:39
求第二问
已知(1+1/2x)^n展开式的各项依次记为a1(x),a2(x),a3(x).an(x),a(n+1)(x)设F(X)=a1(x)+2a2(x)+3a3(x).+nan(x)+(n+1)a(n+1)(x)
1,若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值?
2,求证:对任意x1,x2∈[0,2],恒有│F(X1)-F(X2)│≤(n+2)×2^(n-1)
Abraham 回答:0 人气:7 提问时间:2011-06-09 07:39
求第二问
▼优质解答
答案和解析
(1)n=1或n=8;
(2)【声明:我认为题目应为(1+(1/2)x)^n,而不是(1+1/(2x))^n否则X1与X2的定义域不可能包括0.解题如下:】
令f(x)=(1+1/2x)^n
要证明│F(X1)-F(X2)│≤(n+2)×2^(n-1),只需要证明│F(X1)-F(X2)│的最大值小于或者等于(n+2)×2^(n-1)即可,而显然,当X1=2,X2=0时│F(X1)-F(X2)│取最大值,且F(X1)-F(X2)为正数,即只需证明F(2)-F(0)≤(n+2)×2^(n-1)即可.此时F(X1)-F(X2)=F(2)-F(0).而F(0)=a1(x)=1.
当n=1时,F(2)-F(0)=1+2-1=2 假设当n=k-1的时候,不等式成立,即:F(k-1)(2)-F(0)≤)(k+1)×2^(k-2)
即:F(k-1)(2)=a(1)+2a(2)+3a(3)+……+(k-1)a(k-1)+ka(k)≤(k+1)×2^(k-2)+1,由杨辉三角的知识,不难得知:a(1)=a(k)=1(注:此处a(k)即ak(2),即k为序号,x=2的项,上面已经说明x为什么为2)
则,当n=k时,
F(K)(2)=1+2(a(1)+a(2))+3(a(2)+a(3))+4(a(3)+a(4))+……+k(a(k-1)+a(k))+(k+1)*1
(注:最两边的1即为杨辉三角中最两边的1)
=1+2a(1)+2a(2)+3a(2)+3a(3)+4a(3)+4a(4)+……+ka(k-1)+ka(k)+ka(k)+1
(注:即把上式展开,最后的ka(k)+1实质即k+1,上面已经说了a(1)=a(k)=1)
=1+2(a(1)+2a(2)+3a(3)+4a(4)+……+ka(k))+a(2)+a(3)+a(4)+……+a(k-1)+a
=a(1)+a(2)+a(3)+a(4)+……+a(k)+2F(k-1)(2)
=f(2)+2F(k-1)(2)
=2^n+2F(k-1)(2)
<=2^n+2(n+1)*2^(n-2)+2
=2^(n-1)*(2+n+1)+2
<=(n+2)*2^(n-1)+1
即F(K)(2)-F(0)<=(n+2)*2^(n-1)
即,当n>=2时,F(2)-F(0)≤(n+2)×2^(n-1).
证毕.
(2)【声明:我认为题目应为(1+(1/2)x)^n,而不是(1+1/(2x))^n否则X1与X2的定义域不可能包括0.解题如下:】
令f(x)=(1+1/2x)^n
要证明│F(X1)-F(X2)│≤(n+2)×2^(n-1),只需要证明│F(X1)-F(X2)│的最大值小于或者等于(n+2)×2^(n-1)即可,而显然,当X1=2,X2=0时│F(X1)-F(X2)│取最大值,且F(X1)-F(X2)为正数,即只需证明F(2)-F(0)≤(n+2)×2^(n-1)即可.此时F(X1)-F(X2)=F(2)-F(0).而F(0)=a1(x)=1.
当n=1时,F(2)-F(0)=1+2-1=2 假设当n=k-1的时候,不等式成立,即:F(k-1)(2)-F(0)≤)(k+1)×2^(k-2)
即:F(k-1)(2)=a(1)+2a(2)+3a(3)+……+(k-1)a(k-1)+ka(k)≤(k+1)×2^(k-2)+1,由杨辉三角的知识,不难得知:a(1)=a(k)=1(注:此处a(k)即ak(2),即k为序号,x=2的项,上面已经说明x为什么为2)
则,当n=k时,
F(K)(2)=1+2(a(1)+a(2))+3(a(2)+a(3))+4(a(3)+a(4))+……+k(a(k-1)+a(k))+(k+1)*1
(注:最两边的1即为杨辉三角中最两边的1)
=1+2a(1)+2a(2)+3a(2)+3a(3)+4a(3)+4a(4)+……+ka(k-1)+ka(k)+ka(k)+1
(注:即把上式展开,最后的ka(k)+1实质即k+1,上面已经说了a(1)=a(k)=1)
=1+2(a(1)+2a(2)+3a(3)+4a(4)+……+ka(k))+a(2)+a(3)+a(4)+……+a(k-1)+a
=a(1)+a(2)+a(3)+a(4)+……+a(k)+2F(k-1)(2)
=f(2)+2F(k-1)(2)
=2^n+2F(k-1)(2)
<=2^n+2(n+1)*2^(n-2)+2
=2^(n-1)*(2+n+1)+2
<=(n+2)*2^(n-1)+1
即F(K)(2)-F(0)<=(n+2)*2^(n-1)
即,当n>=2时,F(2)-F(0)≤(n+2)×2^(n-1).
证毕.
看了 一条高中数学二项式定理已知(...的网友还看了以下:
已知x+y=3,xy=2,求x^2+y^2的值 已知x^2-4=0,求代数式x(x+1)^2-x( 2020-05-13 …
已知关于x的方程x²-(m+2)x+2m=0(1)求证方程恒有两个不相等的实数根(2)若此方.已知 2020-05-16 …
用数学归纳法证明,1-x/1!+x(x-1)/2!+...+(-1)^nx(x-1)...(x-n 2020-06-27 …
已知An=(x+1/(2√x))^n的展开式按降幂排列,前三项系数成等差数列(1)求n的值(2)求 2020-06-27 …
已知函数f(x)=2^x-4^x已知函数f(x)=2^x-4^x1、求f(x)的值域2、解不等式f 2020-07-27 …
已知函数f(x)=2|x-2|+ax(x∈R)有最小值.(1)求实常数a的取值范围;(2)设g(x 2020-07-27 …
设函数f(x)等于x加1的绝对值加上x减2的绝对值(1)求不等式f(x)大于5的解集(2)若彐x∈ 2020-08-03 …
问两个关于一元一次不等式、组的问题1.已知代数式(x+1)/3-(x-1)/2-(x-1)/6是非 2020-08-03 …
一元一次不等式1.当K在什么范围内取何值时,关于X的方程(k+2)x-2=1-k(4-x)有不大于 2020-08-03 …
已知f(x)=(4^x+4^-x)-a(2^x-2^-x)+a(a为常数),且2^x+2^-x>=2 2020-11-03 …