早教吧作业答案频道 -->数学-->
一条高中数学二项式定理已知(1+1/2x)^n展开式的各项依次记为a1(x),a2(x),a3(x).an(x),a(n+1)(x)设F(X)=a1(x)+2a2(x)+3a3(x).+nan(x)+(n+1)a(n+1)(x)1,若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值?2,求证:对任意
题目详情
一条高中数学二项式定理
已知(1+1/2x)^n展开式的各项依次记为a1(x),a2(x),a3(x).an(x),a(n+1)(x)设F(X)=a1(x)+2a2(x)+3a3(x).+nan(x)+(n+1)a(n+1)(x)
1,若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值?
2,求证:对任意x1,x2∈[0,2],恒有│F(X1)-F(X2)│≤(n+2)×2^(n-1)
Abraham 回答:0 人气:7 提问时间:2011-06-09 07:39
求第二问
已知(1+1/2x)^n展开式的各项依次记为a1(x),a2(x),a3(x).an(x),a(n+1)(x)设F(X)=a1(x)+2a2(x)+3a3(x).+nan(x)+(n+1)a(n+1)(x)
1,若a1(x),a2(x),a3(x)的系数依次成等差数列,求n的值?
2,求证:对任意x1,x2∈[0,2],恒有│F(X1)-F(X2)│≤(n+2)×2^(n-1)
Abraham 回答:0 人气:7 提问时间:2011-06-09 07:39
求第二问
▼优质解答
答案和解析
(1)n=1或n=8;
(2)【声明:我认为题目应为(1+(1/2)x)^n,而不是(1+1/(2x))^n否则X1与X2的定义域不可能包括0.解题如下:】
令f(x)=(1+1/2x)^n
要证明│F(X1)-F(X2)│≤(n+2)×2^(n-1),只需要证明│F(X1)-F(X2)│的最大值小于或者等于(n+2)×2^(n-1)即可,而显然,当X1=2,X2=0时│F(X1)-F(X2)│取最大值,且F(X1)-F(X2)为正数,即只需证明F(2)-F(0)≤(n+2)×2^(n-1)即可.此时F(X1)-F(X2)=F(2)-F(0).而F(0)=a1(x)=1.
当n=1时,F(2)-F(0)=1+2-1=2 假设当n=k-1的时候,不等式成立,即:F(k-1)(2)-F(0)≤)(k+1)×2^(k-2)
即:F(k-1)(2)=a(1)+2a(2)+3a(3)+……+(k-1)a(k-1)+ka(k)≤(k+1)×2^(k-2)+1,由杨辉三角的知识,不难得知:a(1)=a(k)=1(注:此处a(k)即ak(2),即k为序号,x=2的项,上面已经说明x为什么为2)
则,当n=k时,
F(K)(2)=1+2(a(1)+a(2))+3(a(2)+a(3))+4(a(3)+a(4))+……+k(a(k-1)+a(k))+(k+1)*1
(注:最两边的1即为杨辉三角中最两边的1)
=1+2a(1)+2a(2)+3a(2)+3a(3)+4a(3)+4a(4)+……+ka(k-1)+ka(k)+ka(k)+1
(注:即把上式展开,最后的ka(k)+1实质即k+1,上面已经说了a(1)=a(k)=1)
=1+2(a(1)+2a(2)+3a(3)+4a(4)+……+ka(k))+a(2)+a(3)+a(4)+……+a(k-1)+a
=a(1)+a(2)+a(3)+a(4)+……+a(k)+2F(k-1)(2)
=f(2)+2F(k-1)(2)
=2^n+2F(k-1)(2)
<=2^n+2(n+1)*2^(n-2)+2
=2^(n-1)*(2+n+1)+2
<=(n+2)*2^(n-1)+1
即F(K)(2)-F(0)<=(n+2)*2^(n-1)
即,当n>=2时,F(2)-F(0)≤(n+2)×2^(n-1).
证毕.
(2)【声明:我认为题目应为(1+(1/2)x)^n,而不是(1+1/(2x))^n否则X1与X2的定义域不可能包括0.解题如下:】
令f(x)=(1+1/2x)^n
要证明│F(X1)-F(X2)│≤(n+2)×2^(n-1),只需要证明│F(X1)-F(X2)│的最大值小于或者等于(n+2)×2^(n-1)即可,而显然,当X1=2,X2=0时│F(X1)-F(X2)│取最大值,且F(X1)-F(X2)为正数,即只需证明F(2)-F(0)≤(n+2)×2^(n-1)即可.此时F(X1)-F(X2)=F(2)-F(0).而F(0)=a1(x)=1.
当n=1时,F(2)-F(0)=1+2-1=2 假设当n=k-1的时候,不等式成立,即:F(k-1)(2)-F(0)≤)(k+1)×2^(k-2)
即:F(k-1)(2)=a(1)+2a(2)+3a(3)+……+(k-1)a(k-1)+ka(k)≤(k+1)×2^(k-2)+1,由杨辉三角的知识,不难得知:a(1)=a(k)=1(注:此处a(k)即ak(2),即k为序号,x=2的项,上面已经说明x为什么为2)
则,当n=k时,
F(K)(2)=1+2(a(1)+a(2))+3(a(2)+a(3))+4(a(3)+a(4))+……+k(a(k-1)+a(k))+(k+1)*1
(注:最两边的1即为杨辉三角中最两边的1)
=1+2a(1)+2a(2)+3a(2)+3a(3)+4a(3)+4a(4)+……+ka(k-1)+ka(k)+ka(k)+1
(注:即把上式展开,最后的ka(k)+1实质即k+1,上面已经说了a(1)=a(k)=1)
=1+2(a(1)+2a(2)+3a(3)+4a(4)+……+ka(k))+a(2)+a(3)+a(4)+……+a(k-1)+a
=a(1)+a(2)+a(3)+a(4)+……+a(k)+2F(k-1)(2)
=f(2)+2F(k-1)(2)
=2^n+2F(k-1)(2)
<=2^n+2(n+1)*2^(n-2)+2
=2^(n-1)*(2+n+1)+2
<=(n+2)*2^(n-1)+1
即F(K)(2)-F(0)<=(n+2)*2^(n-1)
即,当n>=2时,F(2)-F(0)≤(n+2)×2^(n-1).
证毕.
看了 一条高中数学二项式定理已知(...的网友还看了以下:
海涅定理为什么要是任意数列函数f(x)在a处收敛于b的充要条件是对任意数列an,(an不等于a), 2020-05-13 …
高中数学~高手进.难题!已知f(x)=ax/(ax+b)且不等式|f(x)|>2的解集为(-2,- 2020-06-04 …
高一数列证明题已知函数f(x)=(x+3)/(x+1)(x≠-1),设数列{An}满足A1=1,A 2020-06-06 …
已知函数f(x)=Inx-x+1,x大于等于1,数列{an}满足a1=e,an+1/an=e(n为 2020-06-06 …
高中数学1函数f(x)=asin2x+cos2x的图像关于直线x=π/12对称则实数a=2{an} 2020-07-09 …
已知函数f(x)=lnx的图象是曲线C,点An(an,f(an))(n∈N*)是曲线C上的一系列点 2020-07-30 …
急,《数学分析》证明题,给个提示也好.1.设f在[0,+∞)上连续,满足0<=f(x)<=x,x∈ 2020-08-01 …
设单调递增函数f(x)的定义域为(0,正无穷),且对任意得正实数x.y有f(xy)=f(x)+f(y 2020-11-03 …
已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y∈R,等式f(x)f 2020-12-27 …
函数+数列题已知函数f(x)=x²+x-1,α,β为方程以f(x)=0的两个根(α>β),f'(x) 2020-12-31 …