早教吧作业答案频道 -->数学-->
若无穷数列{an}满足:只要ap=aq(p,q∈N*),必有ap+1=aq+1,则称{an}具有性质P.(1)若{an}具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;(2)若无穷数列{bn}是等差数列,无穷数列{cn}是
题目详情
若无穷数列{an}满足:只要ap=aq(p,q∈N*),必有ap+1=aq+1,则称{an}具有性质P.
(1)若{an}具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;
(2)若无穷数列{bn}是等差数列,无穷数列{cn}是公比为正数的等比数列,b1=c5=1;b5=c1=81,an=bn+cn,判断{an}是否具有性质P,并说明理由;
(3)设{bn}是无穷数列,已知an+1=bn+sinan(n∈N*),求证:“对任意a1,{an}都具有性质P”的充要条件为“{bn}是常数列”.
(1)若{an}具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;
(2)若无穷数列{bn}是等差数列,无穷数列{cn}是公比为正数的等比数列,b1=c5=1;b5=c1=81,an=bn+cn,判断{an}是否具有性质P,并说明理由;
(3)设{bn}是无穷数列,已知an+1=bn+sinan(n∈N*),求证:“对任意a1,{an}都具有性质P”的充要条件为“{bn}是常数列”.
▼优质解答
答案和解析
(1)∵a2=a5=2,∴a3=a6,
a4=a7=3,∴a5=a8=2,a6=21-a7-a8=16,∴a3=16.
(2)设无穷数列{bn}的公差为:d,无穷数列{cn}的公比为q,则q>0,
b5-b1=4d=80,
∴d=20,∴bn=20n-19,
=q4=
,∴q=
,∴cn=(
)n-5
∴an=bn+cn=20n-19+(
)n-5.
∵a1=a5=82,
而a2=21+27=48,a6=101+
=
.a1=a5,但是a2≠a6,{an}不具有性质P.
(3)充分性:若{bn}是常数列,
设bn=C,则an+1=C+sinan,
若存在p,q使得ap=aq,则ap+1=C+sinap=C+sinaq=aq+1,
故{an}具有性质P.
必要性:若对于任意a1,{an}具有性质P,
则a2=b1+sina1,
设函数f(x)=x-b1,g(x)=sinx,
由f(x),g(x)图象可得,对于任意的b1,二者图象必有一个交点,
∴一定能找到一个a1,使得a1-b1=sina1,
∴a2=b1+sina1=a1,∴an=an+1,
故bn+1=an+2-sinan+1=an+1-sinan=bn,
∴{bn}是常数列.
a4=a7=3,∴a5=a8=2,a6=21-a7-a8=16,∴a3=16.
(2)设无穷数列{bn}的公差为:d,无穷数列{cn}的公比为q,则q>0,
b5-b1=4d=80,
∴d=20,∴bn=20n-19,
| c5 |
| c1 |
| 1 |
| 81 |
| 1 |
| 3 |
| 1 |
| 3 |
∴an=bn+cn=20n-19+(
| 1 |
| 3 |
∵a1=a5=82,
而a2=21+27=48,a6=101+
| 1 |
| 3 |
| 304 |
| 3 |
(3)充分性:若{bn}是常数列,
设bn=C,则an+1=C+sinan,
若存在p,q使得ap=aq,则ap+1=C+sinap=C+sinaq=aq+1,
故{an}具有性质P.
必要性:若对于任意a1,{an}具有性质P,
则a2=b1+sina1,
设函数f(x)=x-b1,g(x)=sinx,
由f(x),g(x)图象可得,对于任意的b1,二者图象必有一个交点,
∴一定能找到一个a1,使得a1-b1=sina1,
∴a2=b1+sina1=a1,∴an=an+1,
故bn+1=an+2-sinan+1=an+1-sinan=bn,
∴{bn}是常数列.
看了 若无穷数列{an}满足:只要...的网友还看了以下:
已知a大于0,b大于0,a+b=1,求证(a+1/a)(b+1/b)大于或等于25/4.解法里面有 2020-05-15 …
已知a>1,设命题P:a(x-2)+1>0,命题Q(x-1)^2>a(x-2)+1.求使得P,Q都 2020-05-15 …
在线等高一的指数与指数幂的运算1.已知a^x=根号2+1求(a^2x)-(a^-2x)/(a^x) 2020-05-20 …
(a+1)(a^2+1)(a^4+1)(a^8+1)(a^16+1)=(a-1)[(a+1)(a^ 2020-05-22 …
已知a/(a^2+1)=1/2,求a^2/(a^4+1)的值由a/(a^2+1)=1/2,知a≠0 2020-06-14 …
如果有理数a,b满足|ab-2|+|1-b|=0.试求1/ab+1/(a+1)(b+1)+1(a+ 2020-07-09 …
写出下列指令运行结果.A(1,1)={'thisiscell'};A{1,2}={[123;456 2020-07-20 …
已知x-1/x=5,求x^2/(x^4+x^2+1)的值若ab=1则1/(1+a^2)+1/(1+ 2020-07-20 …
已知a^2+b^2=5,ab=4求代数式5ab^2(a-b)-3ab(b-a)^2+5a^2b(b- 2020-11-20 …
一道找规律题目1/2=1/1*2=1/1-1/2,1/6=1/2*3=1/2-1/3,1/12=1/ 2020-11-30 …