早教吧作业答案频道 -->数学-->
已知数列{an}满足①a2>0②对于任意正整数pq都有ap*aq=2^p+q成立若bn=(已知数列{an}满足①a2>0②对于任意正整数pq都有ap*aq=2^p+q成立若bn=(an+1)^2求数列{bn}的前n项和
题目详情
已知数列{an}满足①a2>0②对于任意正整数p q 都有ap*aq=2^p+q成立 若bn=(
已知数列{an}满足①a2>0②对于任意正整数p q 都有ap*aq=2^p+q成立 若bn=(an+1)^2 求数列{bn}的前n项和
已知数列{an}满足①a2>0②对于任意正整数p q 都有ap*aq=2^p+q成立 若bn=(an+1)^2 求数列{bn}的前n项和
▼优质解答
答案和解析
你题目错了:是ap*aq=2^(p+q)
由题设可知,a2*a2=2^(2+2)
所以 (a2)²=16
因为 a2>0
所以 a2=4
由题设可知,a1*a2=2^(1+2)
所以 a1*4=8
所以 a1=2
由题设可知,a1*an=2^(1+n)
所以 an=2^(1+n)/2
所以 an=2^n
bn=(2^n+1)²=4^n+2^(n+1)+1
数列{4^n}前n项和是4+4²+4³+.4^n=(4/3)(4^n-1)
数列{2^(n+1)}前n项和是2²+2³+.+2^(n+1)=4(2^n-1)
常数列{1}前n项和是n
于是Sn=(4/3)(4^n-1)+4(2^n-1)+n=(1/3)4^(n+1)+2^(n+2)+n-16/3
由题设可知,a2*a2=2^(2+2)
所以 (a2)²=16
因为 a2>0
所以 a2=4
由题设可知,a1*a2=2^(1+2)
所以 a1*4=8
所以 a1=2
由题设可知,a1*an=2^(1+n)
所以 an=2^(1+n)/2
所以 an=2^n
bn=(2^n+1)²=4^n+2^(n+1)+1
数列{4^n}前n项和是4+4²+4³+.4^n=(4/3)(4^n-1)
数列{2^(n+1)}前n项和是2²+2³+.+2^(n+1)=4(2^n-1)
常数列{1}前n项和是n
于是Sn=(4/3)(4^n-1)+4(2^n-1)+n=(1/3)4^(n+1)+2^(n+2)+n-16/3
看了 已知数列{an}满足①a2>...的网友还看了以下:
求[4-2^(n+1)]/[2^n+2^(n+2)]的极限就是lim[4-2^(n+1)]/[2^n 2020-03-31 …
求数列0,1,1,2,2,3,3,4,4.的前n项和S当n是奇数时.S=2*{[(n-1)/2]* 2020-04-09 …
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n 2020-05-16 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
2^2-1^2=2*1+13^2-2^2=2*2+14^2-3^2=2*3+1……(n+1)^2- 2020-05-19 …
求此极限,n趋于无穷,limln(1+1/n)^2+(1+2/n)^2+(1+n/n)^2liml 2020-06-14 …
an/a(n-1)=(n-1)/(n+1)a3/a2=2/4a2/a1=1/3.上面几式相乘得an 2020-07-09 …
设数列{an}的前n项和为sn,已知sn=2an-2^(n+1),(1).求证数列{an/2^n} 2020-07-23 …
有穷数列{an}共有2k项,(k大等于2),a为常数,且a>1,a1=2,an+1=(a-1)Sn 2020-08-02 …
设f(x)=lim[(n-2)(x^2+x-2)]/[n(x^2+3x+2)+1]x→+∞thank 2020-11-27 …