早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.

题目详情
如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.

(1)证明:∠BAE=∠FEC;
(2)证明:△AGE≌△ECF;
(3)求△AEF的面积.
▼优质解答
答案和解析
(1)证明:∵∠AEF=90°,
∴∠FEC+∠AEB=90°;(1分)
在Rt△ABE中,∠AEB+∠BAE=90°,
∴∠BAE=∠FEC;(3分)
(2)证明:∵G,E分别是正方形ABCD的边AB,BC的中点,
∴AG=GB=BE=EC,且∠AGE=180°-45°=135°;
又∵CF是∠DCH的平分线,
∠ECF=90°+45°=135°;(4分)
在△AGE和△ECF中,
AG=EC
∠AGE=∠ECF=135o
∠GAE=∠FEC

∴△AGE≌△ECF;(6分)
(3)由△AGE≌△ECF,得AE=EF;
又∵∠AEF=90°,
∴△AEF是等腰直角三角形;(7分)
∵AB=a,E为BC中点,
∴BE=
1
2
BC=
1
2
AB=
1
2
a,
根据勾股定理得:AE=
a2+(
1
2
a)2
=
5
2
a,
∴S△AEF=
5
8
a2.(9分)