早教吧作业答案频道 -->其他-->
已知,如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,AH=2,连接CF.(1)当DG=2时,求证:菱形EFGH为正方形;(2)求证:∠AEH=∠CGF;(3)设DG=x,
题目详情

(1)当DG=2时,求证:菱形EFGH为正方形;
(2)求证:∠AEH=∠CGF;
(3)设DG=x,用含x的代数式表示△FCG的面积.
▼优质解答
答案和解析
(1)证明:在△HDG和△AEH中,
∵四边形ABCD是正方形,
∴∠D=∠A=90°,
∵四边形EFGH是菱形,
∴HG=HE,
在Rt△HDG和△AEH中,
,
∴Rt△HDG≌△AEH(HL),
∴∠DHG=∠AEH,
∴∠DHG+∠AHE=90°
∴∠GHE=90°,
∴菱形EFGH为正方形,
∴∠EHG=90°;
(2)证明:过F作FM⊥CD,垂足为M,连接GE,
∵CD∥AB,
∴∠AEG=∠MGE,
∵GF∥HE,
∴∠HEG=∠FGE,
∴∠AEH=∠FGM;
(3)由(2)得到∠AEH=∠FGM,
在Rt△AHE和Rt△GFM中,
,
∴Rt△AHE≌Rt△GFM(AAS),
∴MF=2,
∵DG=x,
∴CG=6-x,
∴S△FCG=
CG•FM=6-x.
∵四边形ABCD是正方形,
∴∠D=∠A=90°,
∵四边形EFGH是菱形,
∴HG=HE,
在Rt△HDG和△AEH中,
|
∴Rt△HDG≌△AEH(HL),
∴∠DHG=∠AEH,
∴∠DHG+∠AHE=90°
∴∠GHE=90°,
∴菱形EFGH为正方形,
∴∠EHG=90°;
(2)证明:过F作FM⊥CD,垂足为M,连接GE,

∵CD∥AB,
∴∠AEG=∠MGE,
∵GF∥HE,
∴∠HEG=∠FGE,
∴∠AEH=∠FGM;
(3)由(2)得到∠AEH=∠FGM,
在Rt△AHE和Rt△GFM中,
|
∴Rt△AHE≌Rt△GFM(AAS),
∴MF=2,
∵DG=x,
∴CG=6-x,
∴S△FCG=
1 |
2 |
看了 已知,如图,正方形ABCD的...的网友还看了以下:
设三阶实对称矩阵A满足A^2+2A=O,而且r(A)=2,求λ为什么值时,λE+2A为正定矩阵已经 2020-04-13 …
A、B立方体,A边长为1分米,B边长为2分米,重分别为50牛和100牛问(1)图中A受到的压强P多 2020-05-17 …
下列描述中,描述成长型基金的是()A.追求为投资者带来高水平的当期收入为目的的投资基金B.指把追 2020-05-22 …
设|a|=4,|b|=3,向量a,b夹角是30度,求以a+2b和a-3b为边的平行四边形的面积是? 2020-06-06 …
求三角形边长已知直角三角形∠A=30°∠A邻边为10求∠A对边已知直角三角形∠A=25°∠B=90 2020-07-30 …
(1)在RT三角形ABC中,角C=90°,a.b.c分别为其三边,c为斜边,若c+a=18,c-a 2020-08-04 …
等边三角形abc,边长为x.过点a做垂直于平面abc的线段ap.长度为2x.求角abp和角pbc各为 2020-11-04 …
下列函数关系中,不是二次函数的是()A.边长为x的正方形的面积y与边长x的函数关系B.一个直角三角形 2021-01-22 …
一个直角三角形底边长为B高为A斜长为C知道AB求C知道AC求B知道BC求A的公式是什么.同上换成锐角 2021-02-05 …
1.解方程:x平方-200x+8750=02.已知三角形一条边长为2cm,在这条边上的中线长为1cm 2021-02-07 …