早教吧作业答案频道 -->数学-->
在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=32,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC
题目详情
在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.
(1)如图1,若AB=3
,BC=5,求AC的长;
(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.

(1)如图1,若AB=3
| 2 |
(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.

▼优质解答
答案和解析
(1)∵∠ABM=45°,AM⊥BM,
∴AM=BM=ABcos45°=3
×
=3,
则CM=BC-BM=5-2=2,
∴AC=
=
=
;
(2)延长EF到点G,使得FG=EF,连接BG.

由DM=MC,∠BMD=∠AMC,BM=AM,
∴△BMD≌△AMC(SAS),
∴AC=BD,
又CE=AC,
因此BD=CE,
由BF=FC,∠BFG=∠EFC,FG=FE,
∴△BFG≌△CFE,
故BG=CE,∠G=∠E,
所以BD=BG=CE,
因此∠BDG=∠G=∠E.
∴AM=BM=ABcos45°=3
| 2 |
| ||
| 2 |
则CM=BC-BM=5-2=2,
∴AC=
| AM2+CM2 |
| 22+32 |
| 13 |
(2)延长EF到点G,使得FG=EF,连接BG.

由DM=MC,∠BMD=∠AMC,BM=AM,
∴△BMD≌△AMC(SAS),
∴AC=BD,
又CE=AC,
因此BD=CE,
由BF=FC,∠BFG=∠EFC,FG=FE,
∴△BFG≌△CFE,
故BG=CE,∠G=∠E,
所以BD=BG=CE,
因此∠BDG=∠G=∠E.
看了 在△ABC中,∠ABM=45...的网友还看了以下:
分解因式a(a-b-c)+b(c-a+b)+c(b-a+c)的结果是()A.(b+c-a)2B.( 2020-04-08 …
下列结论不正确的是()A.若a>0,b>0,则a+b>0B.若a<0,b<0,则a+b<0C.若a 2020-07-09 …
若a,b是有理数,那么下列结论一定正确的是()A.若a<b,则|a|<|b|B.若a>b,则|a| 2020-07-16 …
有理数a、b在数轴上的对应点位置如图所示(1)用“<”连接0、-a、-b、-1(2)化简:|a|- 2020-07-20 …
对任意的a、b∈R,定义:min{a,b}=a,(a<b)b.(a≥b);max{a,b}=a,( 2020-07-20 …
已知向量a与b反向,下列等式成立的是:A:|a|-|b|=|a-b|B:|a+b|=|a-b已知向 2020-07-30 …
35.a+b+c=26;(A)证明:(1)a、b、c成等比数列,且a,b+4,c成等差数列=/=> 2020-07-30 …
已知a、b、c满足a<b<c,ab+bc+ac=0,abc=1,则()A.|a+b|>|c|B.|a 2020-11-01 …
下列推断正确的是a若│a│=│b│,则a=bb若│a│=b,则a=bc若a=负b,则|a|等于|b| 2020-12-28 …
在△ABC中,已知(a^2+b^2)sin(A-B)=(a^2-b^2)sinC,则△ABC是什么△ 2021-01-06 …