如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边中线,点D,E分别在边AC和BC上,DB=DE,EF⊥AC于点F,以下结论:(1)∠DBM=∠CDE;(2)S△BDE<S四边形BMFE;(3)CD•EN=BN•BD;(4)AC=2DF.其中正
如图,在△ABC中,AB=BC,∠ABC=90°,BM是AC边中线,点D,E分别在边AC和BC上,DB=DE,EF⊥AC于点F,以下结论:
(1)∠DBM=∠CDE; (2)S△BDE<S四边形BMFE;
(3)CD•EN=BN•BD; (4)AC=2DF.
其中正确结论的个数是( )
A. 1
B. 2
C. 3
D. 4
∴∠DBE=∠DEB=∠EDC+∠C=x+45°,
∵BD=DE,
∴∠DBM=∠DBE-∠MBE=45°+x-45°=x.
∴∠DBM=∠CDE,故(1)正确;
(2)在Rt△BDM和Rt△DEF中,
|
∴Rt△BDM≌Rt△DEF.
∴S△BDM=S△DEF.
∴S△BDM-S△DMN=S△DEF-S△DMN,即S△DBN=S四边形MNEF.
∴S△DBN+S△BNE=S四边形MNEF+S△BNE,
∴S△BDE=S四边形BMFE,故(2)错误;
(3)∵∠BNE=∠DBM+∠BDN,∠BDM=∠BDE+∠EDF,∠EDF=∠DBM,
∴∠BNE=∠BDM.
又∵∠C=∠NBE=45°
∴△DBC∽△NEB.
∴
CD |
BD |
BN |
EN |
∴CD•EN=BN•BD;故(3)正确;
(4)∵Rt△BDM≌Rt△DEF,
∴BM=DF,
∵∠B=90°,M是AC的中点,
∴BM=
1 |
2 |
∴DF=
1 |
2 |
故选:C.
初中数学题:如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作C 2020-04-26 …
几ˋˊ何数学题自己先把图画出来吧图:一个由点A.B.C组成的等边三角形中,点D是边AB的中点,点E 2020-05-13 …
如图,已知平行四边形ABCD,点P在对角线BD上,EF‖BC,GH‖AB,点E,H,F,G分别是在 2020-05-15 …
四边形ABCD是平行四边形,E是对角线AC上一点,射线DE分别交射线CB、AB于点F、G.(1)如 2020-06-12 …
如图所示,E,F分别是△ABC的边AB,AC上的两定点,在BC上求一点M,使△MEF的周长最短不好 2020-07-13 …
如图,等边△ABC的边长为3,F为BC边上的动点,FD⊥AB于D,FE⊥AC于E,则DE的长为() 2020-07-17 …
初二数学(只是画不上图)如图,等边三角形ABC边长为a,P是三角形ABC内一点,PD平行AB,PE 2020-08-03 …
1.如下图,在三角形ABC中,BD=2DC,AE=2ED,FC=7,求AF.(注:D在BC边上;F在 2020-11-03 …
平行四边形作图题如图形如平行四边形ABCD的土地中,有一条小路E-G-F,E在边AB上,F在CD上. 2020-11-06 …
如图,在边长为a的正方形ABCD中,E为AB边上的动点,F为BC边上的动点,△BEF的周长是2a.如 2020-12-03 …