早教吧作业答案频道 -->数学-->
用完全归纳法证明左右相等,n∈N,x≠1.这道题用完全归纳法,第一步我想的是左边=(1+x)=(1-x^2)/(1-x),那这样我左边2^k=1,所以k=0,右边2^(n+1)=2,n=0,那这样我左边是k,右边是n,我在写的时候要设n=0还是k=0
题目详情
用完全归纳法证明左右相等,
n∈N,x≠1.这道题用完全归纳法,第一步我想的是左边=(1+x)=(1-x^2)/(1-x),那这样我左边2^k=1,所以k=0,右边2^(n+1)=2,n=0,那这样我左边是k ,右边是n,我在写的时候要设n=0还是k=0啊?
然后接下来怎么写呢,

n∈N,x≠1.这道题用完全归纳法,第一步我想的是左边=(1+x)=(1-x^2)/(1-x),那这样我左边2^k=1,所以k=0,右边2^(n+1)=2,n=0,那这样我左边是k ,右边是n,我在写的时候要设n=0还是k=0啊?
然后接下来怎么写呢,

▼优质解答
答案和解析
你理解错了,不是这样的.n=1时,k取0,1
证:
n=1时,
左边=[1+x^(2^0)][1+x^(2^1)]=(1+x)(1+x^2)
右边=(1-x^(2^2))/(1-x)=(1-x^4)/(1-x)=(1+x^2)(1+x)
左边=右边,等式成立.
假设当n=k(k∈N且k≥1)时,等式成立,即
(1+x)(1+x^2)...[1+x^(2^k)]=[1-x^(2^(k+1)]/(1-k)
则当n=k+1时,
(1+x)(1+x^2)...[1+x^(2^k)][1+x^(2^(k+1))]
=[1-x^(2^(k+1)][1+x^(2^(k+1))]/(1-k)
=[1+x^(2^(k+1))-x^(2^(k+1)-x^(2^(k+2))]/(1-k)
=[1-x^(2^(k+1+1)]/(1-k)
等式同样成立.
综上,等式成立.
证:
n=1时,
左边=[1+x^(2^0)][1+x^(2^1)]=(1+x)(1+x^2)
右边=(1-x^(2^2))/(1-x)=(1-x^4)/(1-x)=(1+x^2)(1+x)
左边=右边,等式成立.
假设当n=k(k∈N且k≥1)时,等式成立,即
(1+x)(1+x^2)...[1+x^(2^k)]=[1-x^(2^(k+1)]/(1-k)
则当n=k+1时,
(1+x)(1+x^2)...[1+x^(2^k)][1+x^(2^(k+1))]
=[1-x^(2^(k+1)][1+x^(2^(k+1))]/(1-k)
=[1+x^(2^(k+1))-x^(2^(k+1)-x^(2^(k+2))]/(1-k)
=[1-x^(2^(k+1+1)]/(1-k)
等式同样成立.
综上,等式成立.
看了 用完全归纳法证明左右相等,n...的网友还看了以下:
用完全归纳法证明左右相等,n∈N,x≠1.这道题用完全归纳法,第一步我想的是左边=(1+x)=(1 2020-04-27 …
完全归纳法证明相等∑j=n/2(n+1),j=1到n,这个是提前给出的,可以不用证明在接下来的完全 2020-04-27 …
第一数学归纳法证明:1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6的问题我在 2020-06-11 …
用数学归纳法证明,1-x/1!+x(x-1)/2!+...+(-1)^nx(x-1)...(x-n 2020-06-27 …
用数学归纳法证明,1+X+X^2+...+X^N=1-X^N+1/1-X证:当N=1,左式=1+X 2020-08-01 …
用数学归纳法证明(1-x)(1+x+x^2+……+x^(n-1))=1-x^n证:当N=1时,(1 2020-08-01 …
数学归纳法为什么要设k?数学归纳法证明的第二步是先设n=k假设n=k时命题成立证明n=k+1时命题 2020-08-01 …
如果用数学归纳法证明某命题是错误的我看到许多例子都是数学归纳法证明真命题谁可以找到一个例子是数学归 2020-08-01 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·5·…(2n-1)(n∈N*)时, 2020-08-03 …
数学归纳法cosX/2^n1、数列{an}中,a1=1,S(n+1)=4a(n)+2,用数学归纳法 2020-08-03 …