早教吧作业答案频道 -->数学-->
用完全归纳法证明左右相等,n∈N,x≠1.这道题用完全归纳法,第一步我想的是左边=(1+x)=(1-x^2)/(1-x),那这样我左边2^k=1,所以k=0,右边2^(n+1)=2,n=0,那这样我左边是k,右边是n,我在写的时候要设n=0还是k=0
题目详情
用完全归纳法证明左右相等,
n∈N,x≠1.这道题用完全归纳法,第一步我想的是左边=(1+x)=(1-x^2)/(1-x),那这样我左边2^k=1,所以k=0,右边2^(n+1)=2,n=0,那这样我左边是k ,右边是n,我在写的时候要设n=0还是k=0啊?
然后接下来怎么写呢,

n∈N,x≠1.这道题用完全归纳法,第一步我想的是左边=(1+x)=(1-x^2)/(1-x),那这样我左边2^k=1,所以k=0,右边2^(n+1)=2,n=0,那这样我左边是k ,右边是n,我在写的时候要设n=0还是k=0啊?
然后接下来怎么写呢,

▼优质解答
答案和解析
你理解错了,不是这样的.n=1时,k取0,1
证:
n=1时,
左边=[1+x^(2^0)][1+x^(2^1)]=(1+x)(1+x^2)
右边=(1-x^(2^2))/(1-x)=(1-x^4)/(1-x)=(1+x^2)(1+x)
左边=右边,等式成立.
假设当n=k(k∈N且k≥1)时,等式成立,即
(1+x)(1+x^2)...[1+x^(2^k)]=[1-x^(2^(k+1)]/(1-k)
则当n=k+1时,
(1+x)(1+x^2)...[1+x^(2^k)][1+x^(2^(k+1))]
=[1-x^(2^(k+1)][1+x^(2^(k+1))]/(1-k)
=[1+x^(2^(k+1))-x^(2^(k+1)-x^(2^(k+2))]/(1-k)
=[1-x^(2^(k+1+1)]/(1-k)
等式同样成立.
综上,等式成立.
证:
n=1时,
左边=[1+x^(2^0)][1+x^(2^1)]=(1+x)(1+x^2)
右边=(1-x^(2^2))/(1-x)=(1-x^4)/(1-x)=(1+x^2)(1+x)
左边=右边,等式成立.
假设当n=k(k∈N且k≥1)时,等式成立,即
(1+x)(1+x^2)...[1+x^(2^k)]=[1-x^(2^(k+1)]/(1-k)
则当n=k+1时,
(1+x)(1+x^2)...[1+x^(2^k)][1+x^(2^(k+1))]
=[1-x^(2^(k+1)][1+x^(2^(k+1))]/(1-k)
=[1+x^(2^(k+1))-x^(2^(k+1)-x^(2^(k+2))]/(1-k)
=[1-x^(2^(k+1+1)]/(1-k)
等式同样成立.
综上,等式成立.
看了 用完全归纳法证明左右相等,n...的网友还看了以下:
我会选。给加粗的字选择正确的读音,用线连一连。zhòngchóng重量重复重要重叠háihuán归 2020-05-14 …
英语翻译从明天开始可以借书.每次只能借一本.每半年只能借一周,要及时归还.要爱惜书,不能转借他人. 2020-05-21 …
(x+1)^n=a0+a1(x-1)+a2(x-1)^2+a3(x-1)^3+.+an(x-1)^ 2020-06-12 …
这个数列是收敛还是发散?Un=[1+(2/3)^n]/n如果Un=[(-1)^n+(2/3)^n] 2020-07-31 …
定义矩阵方幂运算:设A是一个n×n的矩阵,定义.若,求(1)A2,A3;(2)猜测An(n∈N*) 2020-08-01 …
对于n∈N*,用数学归纳法证明:1•n+2•(n-1)+3•(n-2)+…+(n-1)•2+n•1 2020-08-01 …
对于n∈N*,用数学归纳法证明:1•n+2•(n-1)+3•(n-2)+…+(n-1)•2+n•1 2020-08-01 …
用数学归纳法证明、平面内有n(n≥2)条直线,其中任何两条不平行,任何三条不过同一点,证明交点的个 2020-08-01 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·5·…(2n-1)(n∈N*)时, 2020-08-03 …
某人向工商银行申请20000元的消费贷款,限期2年归还,不计复利,到期时某人共归还银行22000元( 2020-11-06 …