早教吧作业答案频道 -->数学-->
求xy''-y'+xy'^2=0的通解
题目详情
求xy''-y'+xy'^2=0的通解
▼优质解答
答案和解析
令x=e^t,则xy'=dy/dt,x²y''=d²y/dt²-dt/dt
于是,代入原方程得d²y/dt²-2dy/dt+(dy/dt)²=0.(1)
再令dy/dt=p,则d²y/dt²=dp/dt
于是,代入方程(1)得dp/dt-2p+p²=0
==>dp/(p(2-p))=dt
==>ln│p/(2-p)│=ln│2t│+ln│C1│ (C1是积分常数)
==>p/(2-p)=C1e^(2t)
==>dy/dt=p=2-2/(C1e^(2t)+1)
==>y=2t+ln│C1+e^(-2t)│+C2 (C2是积分常数)
==>y=2ln│x│+ln│C1+1/x²)│+C2
==>y=ln│C1x²+1│+C2
经验证y=C (C是积分常数)也是原方程的解
故 原方程的所有解是y=ln│C1x²+1│+C2,或y=C (C,C1,C2是积分常数)
于是,代入原方程得d²y/dt²-2dy/dt+(dy/dt)²=0.(1)
再令dy/dt=p,则d²y/dt²=dp/dt
于是,代入方程(1)得dp/dt-2p+p²=0
==>dp/(p(2-p))=dt
==>ln│p/(2-p)│=ln│2t│+ln│C1│ (C1是积分常数)
==>p/(2-p)=C1e^(2t)
==>dy/dt=p=2-2/(C1e^(2t)+1)
==>y=2t+ln│C1+e^(-2t)│+C2 (C2是积分常数)
==>y=2ln│x│+ln│C1+1/x²)│+C2
==>y=ln│C1x²+1│+C2
经验证y=C (C是积分常数)也是原方程的解
故 原方程的所有解是y=ln│C1x²+1│+C2,或y=C (C,C1,C2是积分常数)
看了 求xy''-y'+xy'^2...的网友还看了以下:
4y''+4y'=0求满足y|x=0=1y'|x=0=1的特解y'|x=0前面一个y|x=0=1我 2020-04-27 …
求微分方程y''-3y'+2y=2e^x满足y|x=0 =1,dy/dx|x=0 =0的特解对应的 2020-05-17 …
求特解xy'+y=yln(xy)求通解上边那求通解y''-ay'^2=0y(0)=0,y'(0)= 2020-05-21 …
y''''+y''+y=0通解速度速度不好意思搞错了,求微分方程的通解y''''+2y''+y=0 2020-06-03 …
求微分方程的通解y"+y=cosx想问下具体的.)∵齐次方程y"+y=0的特征方程是r²+1=0, 2020-07-31 …
1.(x+y)dx+xdy=02.(y+xlny)y'=ylny3.yy''+(y')^2-y'=0 2020-10-31 …
曲线取值的困惑曲线:x^2Y-X-9Y=0解y得y=x/x^2-9,当x接近于3或-3时,y→∞(我 2020-10-31 …
曲线取值的困惑曲线:x^2Y-X-9Y=0解y得y=x/x^2-9,当x接近于3或-3时,y→∞(我 2020-10-31 …
曲线取值问题曲线:x^2Y-X-9Y=0解y得y=x/x^2-9,当x接近于3或-3时,y→∞(我不 2020-10-31 …
二阶微分方程求解!y''+y=x²,且y(0)=0,y'(0)=1我可以求出通解Y=C1cosx+C 2020-10-31 …