早教吧作业答案频道 -->数学-->
唔..sos.....头晕ing..求证:a^logaN=N(a>0,且a≠0)ps.第2个a是底数~计算:2^log4(2-√3)^2+3^log9(2+√3)^2ps其中的"4"和"9"是底数..对数这节..偶彻底蔫了--.拜托教偶下……感激ing
题目详情
唔..sos.....头晕ing..
求证:a^logaN=N(a>0,且a≠0)
ps.第2个a是底数~
计算:2^log4(2-√3)^2 + 3^log9(2+√3)^2
ps其中的"4"和"9"是底数
..对数这节..偶彻底蔫了- -.拜托教偶下……感激ing
求证:a^logaN=N(a>0,且a≠0)
ps.第2个a是底数~
计算:2^log4(2-√3)^2 + 3^log9(2+√3)^2
ps其中的"4"和"9"是底数
..对数这节..偶彻底蔫了- -.拜托教偶下……感激ing
▼优质解答
答案和解析
求证:a^logaN=N(a>0,且a≠0)
设logaN=t,则N=a^t
a^logaN=a^t=N
2^log4(2-√3)^2 + 3^log9(2+√3)^2
=2^log2(2-√3) + 3^log3(2+√3)
= 2-√3+2+√3
=4
设logaN=t,则N=a^t
a^logaN=a^t=N
2^log4(2-√3)^2 + 3^log9(2+√3)^2
=2^log2(2-√3) + 3^log3(2+√3)
= 2-√3+2+√3
=4
看了 唔..sos.....头晕i...的网友还看了以下:
∑(2^n)/(n^n)的收敛性你回答的是:取后一项后前一项的比.(2^n+1)/((n+1)^(n 2020-03-31 …
请问这个题目该怎么解?3-1=27-3=413-7=621-13=831-21=10即a2-a1=2 2020-03-31 …
已知数列{an}中,a1=1且点pn(an,an+1)(n∈N+)在直线x-y+1=0上,(1)求 2020-05-13 …
(1/(n^2 n 1 ) 2/(n^2 n 2) 3/(n^2 n 3) ……n/(n^2 n 2020-05-16 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
(1)已知x>-1,n∈N*,求证:(1+x)n≥1+nx(2)已知m>0,n∈N*,ex≥m+n 2020-05-17 …
为什么n(n+1)(n+2)可拆成1/4[n(n+1)(n+2)(n+3)-(n-1)n(n+1) 2020-06-22 …
1.判别级数∑(∞,n=1)(1000)^n/n!的敛散性2.求幂级数∑(∞,n=1)(n+1)^ 2020-06-27 …
数论+集合1.证明5个相继的正整数之积不是完全平方数设n≥3,(n-2)(n-1)n(n+1)(n+ 2020-10-31 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …