早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设f′(0)=2,则limx→0[f(x)-f(-x)]/x的值为

题目详情
设f′(0)=2,则lim x→0 [f(x)-f(-x)]/x的值为
▼优质解答
答案和解析
∵f'(0)=2
∴lim(x->0){[f(x)-f(0)]/x}=f'(0)=2
故lim(x->0){[f(x)-f(-x)]/x}=lim(x->0){[f(x)-f(0)+f(0)-f(-x)]/x}
=lim(x->0){[f(x)-f(0)]/x+[f(-x)-f(0)]/(-x)}
=lim(x->0){[f(x)-f(0)]/x}+lim(x->0){[f(-x)-f(0)]/(-x)}
=lim(x->0){[f(x)-f(0)]/x}+lim(x->0){[f(x)-f(0)]/x} (第二个极限用x代换-x)
=2*lim(x->0){[f(x)-f(0)]/x}
=2*2
=4