早教吧 育儿知识 作业答案 考试题库 百科 知识分享

求3sinA+2cosA的最大值,最小值

题目详情
求3sinA+2cosA的最大值,最小值
▼优质解答
答案和解析
3sinA + 2cosA
=√(3^2 + 2^2) *[3sinA/√(3^2 + 2^2) + 2cosA/√(3^2 + 2^2)]
=√13 * [(3/√13) *sinA + (2/√13)*cosA]
设 sinα = (2√13),cosα = (3/√13).所以,上式就可以转换成:
=√13 * [cosα *sinA + sinα * cosA]
=√13 * sin(α + A)
因为 sin(α + A) 的值域为 -1 ≤ sin(α + A) ≤ 1
所以,上式的最大值为 √13,最小值为 -√13