早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别是F1、F2,O为坐标原点,点P是椭圆上的一点,点M为PF1的中点,|OF1|=2|OM|,且OM⊥PF1,则该椭圆的离心率为.

题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别是F1、F2,O为坐标原点,点P是椭圆上的一点,点M为PF1的中点,|OF1|=2|OM|,且OM⊥PF1,则该椭圆的离心率为______.
▼优质解答
答案和解析
如图,∵椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点
分别是F1、F2,O为坐标原点,
点P是椭圆上的一点,点M为PF1的中点,
|OF1|=2|OM|,且OM⊥PF1
∴PF1⊥PF2,|PF2|=c,∠PF1F2=30°,|F1F2|=2c,
∴|PF1|=
3
c,
由椭圆定义知
3
c +c=2a,∴a=
3
+1
2
c,
∴e=
c
a
=
c
3
+1
2
c
=
3
−1.
故答案为:
3
−1.