早教吧作业答案频道 -->数学-->
等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.(1)如图1,求证:∠BCO=∠CAO(2)如图2,若OA=5,OC=2,求B点的坐标(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18
题目详情
等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.

(1)如图1,求证:∠BCO=∠CAO
(2)如图2,若OA=5,OC=2,求B点的坐标
(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18.分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.

(1)如图1,求证:∠BCO=∠CAO
(2)如图2,若OA=5,OC=2,求B点的坐标
(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18.分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.
▼优质解答
答案和解析
(1)如图1,∵∠ACB=90°,∠AOC=90°,
∴∠BCO+∠ACO=90°=∠CAO+∠ACO,
∴∠BCO=∠CAO;
(2)如图2,过点B作BD⊥y轴于D,则∠CDB=∠AOC=90°,
在△CDB和△AOC中,
,
∴△CDB≌△AOC(AAS),
∴BD=CO=2,CD=AO=5,
∴OD=5-2=3,
又∵点B在第三象限,
∴B(-2,-3);
(3)OP的长度不会发生改变.
理由:如图3,过N作NH∥CM,交y轴于H,则
∠CNH+∠MCN=180°,
∵等腰Rt△CAN、等腰Rt△QCM,
∴∠MCQ+∠ACN=180°,
∴∠ACQ+∠MCN=360°-180°=180°,
∴∠CNH=∠ACQ,
又∵∠HCN+∠ACO=90°=∠QAC+∠ACO,
∴∠HCN=∠QAC,
在△HCN和△QAC中,
,
∴△HCN≌△QAC(ASA),
∴CH=AQ,HN=QC,
∵QC=MC,
∴HN=CM,
∵点C(0,3),S△CQA=18,
∴
×AQ×CO=18,即
×AQ×3=18,
∴AQ=12,
∴CH=12,
∵NH∥CM,
∴∠PNH=∠PMC,
∴在△PNH和△PMC中,
,
∴△PNH≌△PMC(AAS),
∴CP=PH=
CH=6,
又∵CO=3,
∴CP=3+6=9(定值),
即OP的长度始终是9.

∴∠BCO+∠ACO=90°=∠CAO+∠ACO,
∴∠BCO=∠CAO;
(2)如图2,过点B作BD⊥y轴于D,则∠CDB=∠AOC=90°,
在△CDB和△AOC中,
|

∴△CDB≌△AOC(AAS),
∴BD=CO=2,CD=AO=5,
∴OD=5-2=3,
又∵点B在第三象限,
∴B(-2,-3);
(3)OP的长度不会发生改变.
理由:如图3,过N作NH∥CM,交y轴于H,则
∠CNH+∠MCN=180°,

∵等腰Rt△CAN、等腰Rt△QCM,
∴∠MCQ+∠ACN=180°,
∴∠ACQ+∠MCN=360°-180°=180°,
∴∠CNH=∠ACQ,
又∵∠HCN+∠ACO=90°=∠QAC+∠ACO,
∴∠HCN=∠QAC,
在△HCN和△QAC中,
|
∴△HCN≌△QAC(ASA),
∴CH=AQ,HN=QC,
∵QC=MC,
∴HN=CM,
∵点C(0,3),S△CQA=18,
∴
1 |
2 |
1 |
2 |
∴AQ=12,
∴CH=12,
∵NH∥CM,
∴∠PNH=∠PMC,
∴在△PNH和△PMC中,
|
∴△PNH≌△PMC(AAS),
∴CP=PH=
1 |
2 |
又∵CO=3,
∴CP=3+6=9(定值),
即OP的长度始终是9.
看了 等腰Rt△ACB,∠ACB=...的网友还看了以下:
物质C(C8H10O4)存在含有苯环的同分异构体,已知:①一个C原子上连两个羟基不稳定;②苯环上含 2020-05-02 …
已知椭圆C的焦点在x轴上,中心为坐标原点.椭圆C上的点到焦点的最远距离是6,最近距离是2.求(1) 2020-05-13 …
如图所示,在光滑水平桌面上放有长木板C,在C上左端和距左端x处各放有小物块A和B,A、B的体积大小 2020-05-17 …
尺规作图求解三条互相平行的直线a,b,c;请用尺规作图,使得正三角形ABC的顶点分别在三条直线上( 2020-06-14 …
已知如图,Rt△ABC的两直角边OA,OB分别在x轴的正半轴和y轴的负半轴上,C为OA上一点已知如 2020-06-27 …
如图所示,轻杆BC一端用铰链固定于墙上,另一端有一小滑轮C,系重物的轻绳绕过滑轮C将上端固定于墙上 2020-07-08 …
关于x的方程x+1/x=c+1/c的解是x1=c,x2=1/c;x-1/x=c-c/1(即x+(- 2020-07-21 …
C、C++上车人数问题公共汽车从始发站(称为第1站)开出,在始发站上车的人数为a,然后到达第2站, 2020-08-04 …
小明同学在某月的日历上圈出了相邻的三个数a.b.c并求出了它们的和为33.这三个数在日历中的排布不可 2020-11-02 …
一道初一的分类讨论题...1.设a+b+c=0,abc>0求b+c/|a|+c+a/|b|+a+b/ 2020-11-06 …