早教吧 育儿知识 作业答案 考试题库 百科 知识分享

若对任意的k在-1,1上,函数f(x)=x^2+(k-4)x-2k+4的最小值为正数,求x的值?

题目详情
若对任意的k在【-1,1】上,函数f(x)=x^2+(k-4)x-2k+4的最小值为正数,求x的值?
▼优质解答
答案和解析
f(x)=x^2+(k-4)x-2k+4的值恒大于0
开口向上,对称轴x=-(k-4)/2=2-k/2
∵f(k)=2-k/2 ( k∈[-1,1])是减函数
∴当k=-1时,对称轴在最右边,当k=1时,对称轴在最左边
为了使函数f(x)=x²+(k-4)x-2k+4的值恒大于0,所以:
k=-1时x必须大于图形与x轴的右交点;
k=1时x必须小于图形与x轴的左交点.
(1)当k=-1时,f(x)=x^2+(-1-4)x-2*(-1)+4=x^2-5x+6=(x-2)(x-3)
k=-1时x必须大于图形与x轴的右交点
∴x>3
(2)当k=1时,f(x)=x^2+(1-4)x-2*1+4=x^2-3x+2=(x-1)(x-2)
k=1时x必须小于图形与x轴的左交点
∴x<1
综上x∈(-∞,1),(3,+∞)