早教吧作业答案频道 -->数学-->
高一对数函数.f(x)满足f(ax-1)=lg(x+2/x-3) 其中a为实常数且a>0求f(x)表达式求f(x)定义域判断f(x)单调性.
题目详情
高一对数函数.
f(x)满足f(ax-1)=lg(x+2/x-3) 其中a为实常数且a>0
求f(x)表达式
求f(x)定义域
判断f(x)单调性.
f(x)满足f(ax-1)=lg(x+2/x-3) 其中a为实常数且a>0
求f(x)表达式
求f(x)定义域
判断f(x)单调性.
▼优质解答
答案和解析
设:t=ax-1
则:x=(t+1)/a
(x+2)/(x-3)=[(t+1)/a+2]/[(t+1)/a-3]=(t+1+2a)/(t+1-3a)
所以,f(t)=lg[(t+1+2a)/(t+1-3a)]
即:f(x)=lg[(x+1+2a)/(x+1-3a)]
设f(t)=f(-t)
f(-t)=lg(1+2a-t)/(1-3a-t)=f(t)=lg(t+1+2a)/(t+1-3a)
(t-1-2a)/(t+3a-1)=(t+1+2a)/(t+1-3a)
t^2+5at+(1+2a)(3a-1)=t^2-5at+(3a-1)(2a+1)
10at=0
因为a≠0,无解,所以f(t)≠f(-t)
设f(t)=-f(-t)
f(-t)=lg(1+2a-t)/(1-3a-t)=-f(t)=lg(t+1-3a)/(t+1+2a)
(t-1-2a)/(t+3a-1)=(t+1-3a)/(t+1+2a)
t^2-(3a-1)^2=t^2-(2a+1)^2
(3a-1)^2=(2a+1)^2
3a-1=2a+1
a=2
或3a-1=-(2a+1)
a=0
所以当a≠2时f(t)≠-f(-t)
若f(x)为非奇非偶函数,则a≠0,a≠2
则:x=(t+1)/a
(x+2)/(x-3)=[(t+1)/a+2]/[(t+1)/a-3]=(t+1+2a)/(t+1-3a)
所以,f(t)=lg[(t+1+2a)/(t+1-3a)]
即:f(x)=lg[(x+1+2a)/(x+1-3a)]
设f(t)=f(-t)
f(-t)=lg(1+2a-t)/(1-3a-t)=f(t)=lg(t+1+2a)/(t+1-3a)
(t-1-2a)/(t+3a-1)=(t+1+2a)/(t+1-3a)
t^2+5at+(1+2a)(3a-1)=t^2-5at+(3a-1)(2a+1)
10at=0
因为a≠0,无解,所以f(t)≠f(-t)
设f(t)=-f(-t)
f(-t)=lg(1+2a-t)/(1-3a-t)=-f(t)=lg(t+1-3a)/(t+1+2a)
(t-1-2a)/(t+3a-1)=(t+1-3a)/(t+1+2a)
t^2-(3a-1)^2=t^2-(2a+1)^2
(3a-1)^2=(2a+1)^2
3a-1=2a+1
a=2
或3a-1=-(2a+1)
a=0
所以当a≠2时f(t)≠-f(-t)
若f(x)为非奇非偶函数,则a≠0,a≠2
看了 高一对数函数.f(x)满足f...的网友还看了以下:
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x), 2020-06-11 …
求函数的驻点f'x(x,y)=2xy(4-x-y)-x^2y=0.(1)其中f'x(x,y)中左边 2020-07-11 …
高手请进,几道指对方程~~(!)x^(lgx)=x^3/100(2)f(x)=lg(ax+1)在( 2020-07-18 …
已知函数f(x)=lg(a∧x-0.5∧2)(a>1)当a=2时.求f(x)的定义域最好讲一下思路 2020-07-25 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
1.集合M={x|x^2>4},P={x|2/{x-1}≥0,则集合P除集合M的集合N{}A:{x 2020-07-30 …
f(-x)=lg(-x+√((-x)^2+1)分子分母有理化得上式=lg(1/(x+√(x^2+1 2020-07-30 …
判断函数y=lg[(x∧2+1)-x]的奇偶性.f(-x)=lg[x+√(x^2+1)]=lg[√ 2020-08-01 …
为什么=lg(-x+根号下1+x的平方)=lg1/(x+根号下1+x的平方)(分子有理化)为什么=l 2020-11-20 …
复合函数的定义域求函数lg(a^x-k*2^x),(a>0且a不等于2)的定义域.这函数求的定义域是 2021-01-31 …