早教吧作业答案频道 -->数学-->
过正方形ABCD的顶点A作PA⊥平面ABCD,设PA=AB=a,求平面PAB和平面PCD所成二面角的大小.
题目详情
过正方形ABCD的顶点A作PA⊥平面ABCD,设PA=AB=a,求平面PAB和平面PCD所成二面角的大小.

▼优质解答
答案和解析
如图,考虑与平面PAB和平面PCD同时相交的第三平面ABCD,
其交线为AB和CD,而AB∥CD,
则平面PAB和平面PCD所成二面角的棱必与AB,CD平行.
在平面PAB内,过点P作PQ∥AB,
则PQ为平面PAB和平面PCD所成二面角的棱,
然后可证得,PA⊥PQ,PD⊥PQ,
∠APD为所求角,在Rt△APD中可求得,∠APD=45°.

其交线为AB和CD,而AB∥CD,
则平面PAB和平面PCD所成二面角的棱必与AB,CD平行.
在平面PAB内,过点P作PQ∥AB,
则PQ为平面PAB和平面PCD所成二面角的棱,
然后可证得,PA⊥PQ,PD⊥PQ,
∠APD为所求角,在Rt△APD中可求得,∠APD=45°.
看了 过正方形ABCD的顶点A作P...的网友还看了以下:
已知a/b=c/d=e/f=2,当b+d≠0时,a+c/b+d=;当b+d+f≠0时,a+c+e/ 2020-05-14 …
初三比例式计算.如题.已知a/b=c/d(bd不等于0).判断下列比例式是否成立.并说明理由.a- 2020-06-10 …
如果a、b、c是3个整数,则它们满足加法交换律和结合律,即(1)a+b=b+a;(2)(a+b)+ 2020-06-19 …
1.设abcd是四个整数,且使m=(ab+cd)^2-1/4(a^2+b^2-c^2-d^2)^2 2020-07-09 …
数学厉害的进来1求证a²+3b²≥2b(a+b)2,求证a²+b²+2≥2a+2b3,已知a≠2, 2020-07-09 …
这道数学题为什么这么写呢设abcd都是有理数,若a+b的绝对值=4,c+d的绝对值=2,且a-c+ 2020-07-13 …
不等式和区间的概念基础练习实数小于2,但不小于-1,用不等式可表示为.判断题若a>b,则a-1>b 2020-08-03 …
已知a,b,c,d为正数,a>b>c>d,记x=√(ab+cd)(a-b)(c-d),y=√(ac+ 2020-11-03 …
代数化简法化简1.L=A*B*非C+非(A*B*C)*非(A*B)1.L=A*B*非C+非(A*B* 2020-12-07 …
判断下列命题的真假已知a,b,c,d∈R(1)若ac>bc,则a>b(2)若a>-b,则c-ab>c 2020-12-13 …