早教吧作业答案频道 -->数学-->
已知平面a垂直于平面b,交线为AB,C属于a,D属于b,AB=AC=BC=4根号3,E为BC的中点,AC垂直于BD,BD=8,求证,BD⊥平面a求证,平面AED⊥平面BCD,求二面角B-AC-D的正切值
题目详情
已知平面a垂直于平面b,交线为AB,C属于a,D属于b,AB=AC=BC=4 根号3,E为BC的中点,AC 垂直于BD,BD=8,
求证,BD⊥平面a 求证,平面AED⊥平面BCD,求二面角B-AC-D的正切值
求证,BD⊥平面a 求证,平面AED⊥平面BCD,求二面角B-AC-D的正切值
▼优质解答
答案和解析
如图,取AB中点F,连接CF,△ABC为等边三角形
1) ∵平面a⊥平面b,CF垂直面a、面b交线
∴CF⊥面b 又BD∈面b
∴CF⊥BD
又BD⊥AC,AC交CF于C,
∴BD⊥面a
2)由BD⊥面a可得 BD⊥AE,又AE⊥BC
∴AE⊥面BCD
面AED垂直于面BCD的直线AE
∴平面AED⊥平面BCD
3)取AC中点O,连接OB、OD,类似第一问的方法可以证明AC⊥OD,所以二面角B-AC-D的平面角即为∠BOD,△BOD为直角三角形(BD⊥BO),所以tan∠BOD=BD/OB
易解得:OB=4√3*sin60°=6,所以:tan∠BOD=4/3
很详细了,不明白可以继续问.
1) ∵平面a⊥平面b,CF垂直面a、面b交线
∴CF⊥面b 又BD∈面b
∴CF⊥BD
又BD⊥AC,AC交CF于C,
∴BD⊥面a
2)由BD⊥面a可得 BD⊥AE,又AE⊥BC
∴AE⊥面BCD
面AED垂直于面BCD的直线AE
∴平面AED⊥平面BCD
3)取AC中点O,连接OB、OD,类似第一问的方法可以证明AC⊥OD,所以二面角B-AC-D的平面角即为∠BOD,△BOD为直角三角形(BD⊥BO),所以tan∠BOD=BD/OB
易解得:OB=4√3*sin60°=6,所以:tan∠BOD=4/3
很详细了,不明白可以继续问.
看了 已知平面a垂直于平面b,交线...的网友还看了以下:
在梯形纸片ABCD中,BC∥AD,∠A+∠D=90度,tanA=2,过点B作BH⊥AD于H,BC=B 2020-03-30 …
如图,OB是圆A的直径,A为圆心,OB=20.DP与圆相切于点D,DP垂直于PB,垂足为P,PB与 2020-04-26 …
已知两垂直平面a,b,交线为AB,直线c属于a,直线d属于b.若c,d都不垂直与AB,求证:c,d 2020-05-13 …
ABC乘以D C等于FIGAA 2020-05-16 …
x-5分之4=4分之1,3分之1+x=2分之1,解方程有下列10个数:17、12、15、17、10 2020-05-16 …
把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O 2020-06-20 …
已知:在三角形ABC中,角C=90度,CM垂直AB于M,AT平分角BAC交CM于D,交BC于T,过 2020-07-17 …
初二数学;在三角形ABC中,角ABC=2角C,BD平分角ABC交AC于D,AE垂直于BD,垂足为E 2020-07-19 …
这个是一个关于建筑制图的问题,在投影面中?投影面垂直面有三种不同情况,其中说法正确的是(?)A.垂 2020-07-29 …
已知AB为圆的直径,CD垂直AB与圆交于C,垂足为D,以C为圆心,CD为半径作圆与前圆交于EF,EF 2020-11-27 …