早教吧作业答案频道 -->数学-->
已知平面a垂直于平面b,交线为AB,C属于a,D属于b,AB=AC=BC=4根号3,E为BC的中点,AC垂直于BD,BD=8,求证,BD⊥平面a求证,平面AED⊥平面BCD,求二面角B-AC-D的正切值
题目详情
已知平面a垂直于平面b,交线为AB,C属于a,D属于b,AB=AC=BC=4 根号3,E为BC的中点,AC 垂直于BD,BD=8,
求证,BD⊥平面a 求证,平面AED⊥平面BCD,求二面角B-AC-D的正切值
求证,BD⊥平面a 求证,平面AED⊥平面BCD,求二面角B-AC-D的正切值
▼优质解答
答案和解析
如图,取AB中点F,连接CF,△ABC为等边三角形
1) ∵平面a⊥平面b,CF垂直面a、面b交线
∴CF⊥面b 又BD∈面b
∴CF⊥BD
又BD⊥AC,AC交CF于C,
∴BD⊥面a
2)由BD⊥面a可得 BD⊥AE,又AE⊥BC
∴AE⊥面BCD
面AED垂直于面BCD的直线AE
∴平面AED⊥平面BCD
3)取AC中点O,连接OB、OD,类似第一问的方法可以证明AC⊥OD,所以二面角B-AC-D的平面角即为∠BOD,△BOD为直角三角形(BD⊥BO),所以tan∠BOD=BD/OB
易解得:OB=4√3*sin60°=6,所以:tan∠BOD=4/3
很详细了,不明白可以继续问.
1) ∵平面a⊥平面b,CF垂直面a、面b交线
∴CF⊥面b 又BD∈面b
∴CF⊥BD
又BD⊥AC,AC交CF于C,
∴BD⊥面a
2)由BD⊥面a可得 BD⊥AE,又AE⊥BC
∴AE⊥面BCD
面AED垂直于面BCD的直线AE
∴平面AED⊥平面BCD
3)取AC中点O,连接OB、OD,类似第一问的方法可以证明AC⊥OD,所以二面角B-AC-D的平面角即为∠BOD,△BOD为直角三角形(BD⊥BO),所以tan∠BOD=BD/OB
易解得:OB=4√3*sin60°=6,所以:tan∠BOD=4/3
很详细了,不明白可以继续问.
看了 已知平面a垂直于平面b,交线...的网友还看了以下:
几道高二不等式证明题.1.a,b属于正数,a不等于b.求证a/根号b+b/根号a>根号a+根号b2. 2020-03-30 …
设集合A={x|x=a+根号2b,a,b属于z}(1)若m属于A,求证m平方属于A(2)已知x=3 2020-04-06 …
数列证明题(在线等,完成后在多给分)下面的a(1),a(2),.a(n)都是数组的项.a(n)*2 2020-06-06 …
已知平面a垂直于平面b,交线为AB,C属于a,D属于b,AB=AC=BC=4根号3,E为BC的中点 2020-06-27 …
立体几何题目在三棱锥A-BCD中,M,N分别是三角形ACD,三角形BCD的重心,求证:MN‖平面A 2020-07-08 …
若关于x的方程3a-x=2分之x+3的解是二则括号负a括号平方-2a+1等于 2020-07-16 …
若a,b,c为两两不相等的有理数,求证:根号下1/(a-b)的平方+1/(b-c)的平方+1/(c 2020-07-31 …
如果a.b都是正数.且a不等于b,求证:根号b分之a+根号a分之b大于根号a+根号b?要详细解析( 2020-08-01 …
在书法水平等级证书考试中,某考生的准考证号为12835200200204,其中最后四位数字表示该考生 2020-11-06 …
1+a四方小于等于2乘以b-c括号平方,1+b四方小于等于2乘以c-a括号平方,1+c四方小于等于2 2020-11-07 …