早教吧作业答案频道 -->其他-->
如图所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,AA1=3.(1)证明:A1C⊥平面AB1C1;(2)若D是棱CC1的中点,在棱AB上是否存在一点E,使DE∥平面AB1C1?证明你的结论.(3)求A1到平面A
题目详情
如图所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,AA1=| 3 |
(1)证明:A1C⊥平面AB1C1;
(2)若D是棱CC1的中点,在棱AB上是否存在一点E,使DE∥平面AB1C1?证明你的结论.
(3)求A1到平面AB1C1的距离.
▼优质解答
答案和解析
(1)证明:由题意可得四边形A1C1CA是矩形,又AC=
=
=AA1,
∴四边形A1C1CA是正方形,∴A1C⊥AC1.
∵BC⊥CA,CC1⊥BC,BC∩CC1=C,
∴BC⊥平面A1C1CA,∴BC⊥A1C,
∵B1C1∥BC,∴B1C1⊥A1C.
又AC1∩B1C1=C1,∴A1C⊥平面AB1C1.
(2)在棱AB上存在一点EW为AB的中点,使DE∥平面AB1C1.
证明:取AC的中点F,AB的中点E,连接DF、EF、DE.
由三角形中位线定理可得:DF∥AC1,EF∥BC,即EF∥B1C1.
∵DF⊄平面AB1C1,AC1⊂平面AB1C1.
∴DF∥平面AB1C1.
同理EF∥平面AB1C1.
而DF∩EF=F,∴平面EFD∥平面AB1C1.
∴DE∥平面AB1C1.
(3)设AC1∩A1C=O,由(1)可知:A1O⊥平面AB1C1,
∴A1O即为点A1到平面AB1C1.的距离.
而A1O=
A1C=
.
∴点A1到平面AB1C1.的距离为
.
| AB2−BC2 |
| 3 |
∴四边形A1C1CA是正方形,∴A1C⊥AC1.
∵BC⊥CA,CC1⊥BC,BC∩CC1=C,
∴BC⊥平面A1C1CA,∴BC⊥A1C,
∵B1C1∥BC,∴B1C1⊥A1C.
又AC1∩B1C1=C1,∴A1C⊥平面AB1C1.
(2)在棱AB上存在一点EW为AB的中点,使DE∥平面AB1C1.

证明:取AC的中点F,AB的中点E,连接DF、EF、DE.
由三角形中位线定理可得:DF∥AC1,EF∥BC,即EF∥B1C1.
∵DF⊄平面AB1C1,AC1⊂平面AB1C1.
∴DF∥平面AB1C1.
同理EF∥平面AB1C1.
而DF∩EF=F,∴平面EFD∥平面AB1C1.
∴DE∥平面AB1C1.
(3)设AC1∩A1C=O,由(1)可知:A1O⊥平面AB1C1,
∴A1O即为点A1到平面AB1C1.的距离.
而A1O=
| 1 |
| 2 |
| ||
| 2 |
∴点A1到平面AB1C1.的距离为
| ||
| 2 |
看了 如图所示,在直三棱柱ABC-...的网友还看了以下:
已知椭圆x^2/a^2+Y^2/b^2=1(a>b>0)的离心率为根号3/3,过右焦点F的直线l与 2020-05-12 …
若函数f(x)=根号ex+x−a,存在b∈[0,1],使f(f(b))=b,则实数a的取值范围是. 2020-05-13 …
不等式误区a,b,c都为正,a+b+c=1求1/a^2+1/b^2+1/c^2的最小值帮我看一下我 2020-06-06 …
甲乙两车分别从AB两地出发,相向而行,在距A地40km处第一次相遇,到达目的地后立即返回,在距B点 2020-06-14 …
将电荷量为6×10-6C的负电荷从电场中A点移到B点,克服电场力做了3×10-5J的功,再将该电荷 2020-07-12 …
在前面的练习中,我们曾遇到过这样的问题:已知ab/(a+b)=1/3,bc/(b+c)=1/4,c 2020-07-22 …
沿x轴正方向运动的A质点和B质点,其位置-时间图象(如图所示)分别为图中直线a和曲线b,已知B质点 2020-07-31 …
C:x^2/a^2+y^2/b^2=1的离心率为1/2,其左焦点到点p(2,1)的距离为根号10, 2020-08-01 …
比较图1、图2中各点压强的大小:(1)在图1中,B点和C点深度相同,而A点比B点深,则各点压强PAP 2020-11-01 …
定义运算a*b=a(1-b),下面给出了几个结论:1.a*b=b*a2.若a+b=0,则(a*a)+ 2020-11-08 …