早教吧作业答案频道 -->数学-->
圆内接锐角三角形ABC,分别连接AO、BO、CO交BC、AC、AB于D、E、F,求证1/AD+1/BE+1/CF=2/R,用平面几何知识用平面几何知识解答,急
题目详情
圆内接锐角三角形ABC,分别连接AO、BO、CO交BC、AC、AB于D、E、F,求证1/AD+1/BE+1/CF=2/R,用平面几何知识
用平面几何知识解答,急
用平面几何知识解答,急
▼优质解答
答案和解析
证明:分别作三角形ABC和三角形OBC的高AH和OG
则 AH//OG
所以 OD/AD=OG/AH
因为 三角形OBC的面积/三角形ABC的面积=OG/AH
所以 三角形OBC的面积/三角形ABC的面积=OD/AD
同理 三角形OAC的面积/三角形ABC的面积=OE/BE
三角形OAB的面积/三角形ABC的面积=OF/CF
三式相加可得:OD/AD+OE/BE+OF/CF=1
因为 OD/AD=(AD--AO)/AD=1--AO/AD
OE/BE=1--BO/BE
OF/CF=1--CO/CF
所以 (1--AO/AD)+(1--BO/BE)+(1--CO/CF)=1
即:AO/AD+BO/BE+CO/CF=2
因为AO=BO=CO=R
所以 R/AD+R/BE+R/CF=2
即:1/AD+1/BE+1/CF=2/R.
则 AH//OG
所以 OD/AD=OG/AH
因为 三角形OBC的面积/三角形ABC的面积=OG/AH
所以 三角形OBC的面积/三角形ABC的面积=OD/AD
同理 三角形OAC的面积/三角形ABC的面积=OE/BE
三角形OAB的面积/三角形ABC的面积=OF/CF
三式相加可得:OD/AD+OE/BE+OF/CF=1
因为 OD/AD=(AD--AO)/AD=1--AO/AD
OE/BE=1--BO/BE
OF/CF=1--CO/CF
所以 (1--AO/AD)+(1--BO/BE)+(1--CO/CF)=1
即:AO/AD+BO/BE+CO/CF=2
因为AO=BO=CO=R
所以 R/AD+R/BE+R/CF=2
即:1/AD+1/BE+1/CF=2/R.
看了 圆内接锐角三角形ABC,分别...的网友还看了以下:
AD是直角三角形ABC斜边上的高,角BAD,角CAD的平分线分别交斜边于E、F找出所有等腰三角形, 2020-06-03 …
现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°),如图(1),其中一 2020-06-22 …
BD CD是三角形ABC的外交,角CBE与角BCF的角平分线BD和CD交于点D 证明BD CD是三 2020-06-27 …
把两个全等的等腰直角三角形三角板AOC和DCE(其直角边长均为4)叠放在一起……把两个全等的等腰直 2020-07-07 …
(2013•宝山区一模)已知∠AOB=90°,OM是∠AOB的平分线,将一个直角三角板的直角顶点P 2020-07-17 …
读“黄道平面与赤道平面的交角图”,回答3-4题.下列说法正确的是()A.目前的黄赤交角是66.5° 2020-07-20 …
已知等腰直角三角形AOB,∠AOB=90°,一直角三角板的直角顶点放在等腰三角形斜边中点C上,将此 2020-07-26 …
三角形的三条角平分线相交于三角形一点三角形的三条高相交于一线的位置情况有三种:如果是钝角三角形,那 2020-07-30 …
下列命题:①直角三角形的外角一定不是锐角.②周长相等的两个三角形是全等三角形;③全等三角形对应边上 2020-08-01 …
已知在钝角三角形ABC中,AC、BC边上的高分别是BE、AD,BE、AD的延长线交于H点,点F、G分 2020-11-20 …