早教吧作业答案频道 -->其他-->
(2013•宝山区一模)已知∠AOB=90°,OM是∠AOB的平分线,将一个直角三角板的直角顶点P放在射线OM上,OP=m(m为常数且m≠0),移动直角三角板,两边分别交射线OA,OB与点C,D(1)如图,当点
题目详情

(1)如图,当点C、D都不与点O重合时,求证:PC=PD;
(2)联结CD,交OM于E,设CD=x,PE=y,求y与x之间的函数关系式;
(3)如图,若三角板的一条直角边与射线OB交于点D,另一直角边与直线OA,直线OB分别交于点C,F,且△PDF与△OCD相似,求OD的长.
▼优质解答
答案和解析
(1)证明:作PH⊥OA于H,PN⊥OB于N,
则∠PHC=∠PND=90°,
则∠HPC+∠CPN=90°
∵∠CPN+∠NPD=90°
∴∠HPC=∠NPD,
∵OM是∠AOB的平分线
∴PH=PN,∠POB=45°,
∵在△PCH与△PDN中,
,
∴△PCH≌△PDN(ASA)
∴PC=PD;
(2)∵PC=PD,
∴∠PDC=45°,
∴∠POB=∠PDC,
∵∠DPE=∠OPD,
∴△PDE∽△POD,
∴PE:PD=PD:PO,
又∵PD2=
CD2,
∴PE=
x2,即y与x之间的函数关系式为y=
x2;

(3)①如图1,点C在AO上时,∵∠PDF>∠CDO,
令△PDF∽△OCD,
∴∠DFP=∠CDO,
∴CF=CD,
∵CO⊥DF
∴OF=OD
∴OD=
DF=OP=m;
②如图2,点C在AO的延长线上时,
△PDF与△OCD相似,若∠2=∠PFD,则PC∥CD,与PC、DC相交于点C矛盾,
所以,只能是∠1=∠2,
由(1)可知PC=PD,
∴△PCD是等腰直角三角形,
∴∠1+∠2=45°,
∴∠1=22.5°,
过点P作PG⊥OM交OD于G,
∵∠AOB=90°,OM是∠AOB的平分线,
∴△POG是等腰直角三角形,
∴OG=
OP=
m,
PG=OP=m,
∵∠1+∠3=∠PGO=45°,
∴∠3=22.5°,
∴∠1=∠3,
∴PG=DG=m,
∴OD=OG+DG=
m+m=(

则∠PHC=∠PND=90°,
则∠HPC+∠CPN=90°
∵∠CPN+∠NPD=90°
∴∠HPC=∠NPD,
∵OM是∠AOB的平分线
∴PH=PN,∠POB=45°,
∵在△PCH与△PDN中,
|
∴△PCH≌△PDN(ASA)
∴PC=PD;
(2)∵PC=PD,
∴∠PDC=45°,
∴∠POB=∠PDC,
∵∠DPE=∠OPD,
∴△PDE∽△POD,
∴PE:PD=PD:PO,
又∵PD2=
1 |
2 |
∴PE=
1 |
2m |
1 |
2m |

(3)①如图1,点C在AO上时,∵∠PDF>∠CDO,
令△PDF∽△OCD,
∴∠DFP=∠CDO,
∴CF=CD,
∵CO⊥DF
∴OF=OD
∴OD=
1 |
2 |
②如图2,点C在AO的延长线上时,
△PDF与△OCD相似,若∠2=∠PFD,则PC∥CD,与PC、DC相交于点C矛盾,
所以,只能是∠1=∠2,
由(1)可知PC=PD,
∴△PCD是等腰直角三角形,
∴∠1+∠2=45°,
∴∠1=22.5°,
过点P作PG⊥OM交OD于G,
∵∠AOB=90°,OM是∠AOB的平分线,
∴△POG是等腰直角三角形,
∴OG=
2 |
2 |
PG=OP=m,
∵∠1+∠3=∠PGO=45°,
∴∠3=22.5°,
∴∠1=∠3,
∴PG=DG=m,
∴OD=OG+DG=
2 |
作业帮用户
2017-11-07
|
看了 (2013•宝山区一模)已知...的网友还看了以下:
1.已知三角形ABC的两边AC,BC分别交平面a于点M,N,设直线AB与平面a交于点O,则点O与直 2020-05-13 …
如图1,点o为直线AB上一点,过O点作射线OC使∠BOC=120°.将一直角三角板的直角顶点放在点 2020-05-16 …
如图,在三角形ABC中,点O是AC边上的一个动点,过点O作直线MN平行于BC,设MN交∠ACB的平 2020-06-06 …
几何好的帮帮忙啊.感激不尽呐.1、经过空间三点一定能确定一个平面吗?2、已知三角形ABC的两边AB 2020-07-12 …
如图①点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90°)(1)将如 2020-07-17 …
如图在三角形ABC中,点O是AC边上的动点,过点O作直线EF//BC,交于角BCA的平分线于点E, 2020-07-30 …
在三角形ABC中,点O是边AC上一个动点,过O作直线EF平行于BC,设EF交角BCA的平分线于点在 2020-08-03 …
如图,在三角形ABC中,点O是AC边上一个动点在三角形ABC中,点O是AC边上一动点,过点O做直线 2020-08-03 …
我们新定义一种三角形:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.如图,AB是⊙O的直径, 2020-11-24 …
在平面直角坐标系中,o是坐标原点,矩形oabc的位置如图所示,点A,C的坐标分别为(10,0),(0 2020-12-25 …