早教吧作业答案频道 -->数学-->
在数列an中,a1=1,且对任意实数n∈N*,都有,an+1=an+2^n,(1)求证:数列an/2^n是等差数列;(2)设数列an的前n项和为sn,求证:对任意的n∈N*,都有s(n+1)-4an=1
题目详情
在数列an中,a1=1,且对任意实数n∈N*,都有,an+1=an+2^n,
(1)求证:数列an/2^n是等差数列;
(2)设数列an的前n项和为sn,求证:对任意的n∈N*,都有s(n+1)-4an=1
(1)求证:数列an/2^n是等差数列;
(2)设数列an的前n项和为sn,求证:对任意的n∈N*,都有s(n+1)-4an=1
▼优质解答
答案和解析
题目写漏个2吧=_+【a(n+1)=2an+2^n】
证明:
⑴
∵a(n+1)=2an+(2^n)
∴a(n+1)-2an=2^n
∴[a(n+1)-2an]/[2^(n+1)]=[a(n+1)/2^(n+1)]-[an/(2^n)]=(2^n)/[2^(n+1)]=1/2
∴数列{an/2^n}是以首项为a1/2=1/2,公差为1/2的等差数列
⑵
由⑴知:
an/(2^n)=1/2+(n-1)×1/2=1/2n
∴an=(1/2n)×(2^n)=n•2^(n-1)
∴Sn=1•(2^0)+2•(2^1)+3•(2^2)+……+(n-1)•2^(n-2)+n•2^(n-1)
则2Sn= 1•(2^1)+2•(2^2)+3•(2^3)+………………+(n-1)•2^(n-1)+n•(2^n)
两式相减,得:
Sn=n•(2^n)-(1+2+2^2+……+2^(n-1))=n•(2^n)-[ [1(1-(2^n)]/(1-2) ]=n•(2^n)-(2^n)+1=(2^n)(n-1)+1
∴S(n+1)-4an=[2^(n+1)]•n+1-[n•2^(n+1)]=1.
证明:
⑴
∵a(n+1)=2an+(2^n)
∴a(n+1)-2an=2^n
∴[a(n+1)-2an]/[2^(n+1)]=[a(n+1)/2^(n+1)]-[an/(2^n)]=(2^n)/[2^(n+1)]=1/2
∴数列{an/2^n}是以首项为a1/2=1/2,公差为1/2的等差数列
⑵
由⑴知:
an/(2^n)=1/2+(n-1)×1/2=1/2n
∴an=(1/2n)×(2^n)=n•2^(n-1)
∴Sn=1•(2^0)+2•(2^1)+3•(2^2)+……+(n-1)•2^(n-2)+n•2^(n-1)
则2Sn= 1•(2^1)+2•(2^2)+3•(2^3)+………………+(n-1)•2^(n-1)+n•(2^n)
两式相减,得:
Sn=n•(2^n)-(1+2+2^2+……+2^(n-1))=n•(2^n)-[ [1(1-(2^n)]/(1-2) ]=n•(2^n)-(2^n)+1=(2^n)(n-1)+1
∴S(n+1)-4an=[2^(n+1)]•n+1-[n•2^(n+1)]=1.
看了 在数列an中,a1=1,且对...的网友还看了以下:
已知Sn=2Sn-1+1,a1=1,求数列的通项公式前n想和Sn因为Sn-Sn-1=an所以Sn= 2020-04-07 …
1.已知数列{An}满足{An/n}是公差为1,的等差数列,且An+1=(n+2/n)·An+1( 2020-04-09 …
数列{an}满足a1=1,an+1=2^n+1*an/an+2^n(n∈N+)1)证明:数列{2^ 2020-05-17 …
lim┬(n→∞)〖(1/(n^2+1)〗+2/(n^2+2)+⋯n/(n^2+n))等于1/2 2020-05-23 …
在数列an中,a1=1,且对任意实数n∈N*,都有,an+1=an+2^n,(1)求证:数列an/ 2020-06-27 …
1、若{An}满足An=n2+λn (λ∈ N*)为递增数列,求实数λ的取值范围.2、已知数列{A 2020-06-27 …
再来两个等比数列题(高中数学)page1291)已知等比数列{an}前3项的和是9/2,前6项的和 2020-07-18 …
观察等式:1*2*3*4+1=5^2=(1^2+3*1+1)^22*3*4*5+1=11^2=(2 2020-07-21 …
An=n^2+n.Bn=1/An+1+1/An+2+.+1/A2n,(n+1、2n这些都是角标), 2020-08-01 …
设数列{an}的前n项和为Sn,且a1=1,Sn=an+1-1(1)求数列{an}的通项公式(2)设 2021-02-09 …