早教吧作业答案频道 -->数学-->
已知函数f(x)=x(1+lnx)x−1,(x>1)(1)设x0为函数f(x)的极值点,求证:f(x0)=x0;(2)若当x>1时,xlnx+(1-k)x+k>0恒成立,求正整数k的最大值.
题目详情
已知函数f(x)=
,(x>1)
(1)设x0为函数f(x)的极值点,求证:f(x0)=x0;
(2)若当x>1时,xlnx+(1-k)x+k>0恒成立,求正整数k的最大值.
| x(1+lnx) |
| x−1 |
(1)设x0为函数f(x)的极值点,求证:f(x0)=x0;
(2)若当x>1时,xlnx+(1-k)x+k>0恒成立,求正整数k的最大值.
▼优质解答
答案和解析
(1)∵f(x)=
,(x>1),∴f′(x)=
,
∵x0为函数f(x)的极值点,∴f'(x0)=0,
即x0-2-lnx0=0,于是x0-1=1+lnx0,
故f(x0)=
=
=x0.
(2)xlnx+(1-k)x+k>0恒成立,分离参数得k<
=f(x).
则x>1时,f(x)>k恒成立,只需f(x)min>k,f′(x)=
,
记g(x)=x-2-lnx,∴g′(x)=1−
>0,
∴g(x)在(1,+∞)上递增,又g(3)=1-ln3<0,g(4)=2-ln4>0,
∴g(x)在(1,+∞)上存在唯一的实根x0,且满足x0∈(3,4),
∴当1<x<x0时g(x)<0,即f'(x)<0;当x>x0时g(x)>0,
即f'(x)>0,f(x)min=f(x0)=x0∈(3,4),
故正整数k的最大值为3.
| x(1+lnx) |
| x−1 |
| x−2−lnx |
| (x−1)2 |
∵x0为函数f(x)的极值点,∴f'(x0)=0,
即x0-2-lnx0=0,于是x0-1=1+lnx0,
故f(x0)=
| x0(1+lnx0) |
| x0−1 |
| x0(x0−1) |
| x0−1 |
(2)xlnx+(1-k)x+k>0恒成立,分离参数得k<
| x(1+lnx) |
| x−1 |
则x>1时,f(x)>k恒成立,只需f(x)min>k,f′(x)=
| x−2−lnx |
| (x−1)2 |
记g(x)=x-2-lnx,∴g′(x)=1−
| 1 |
| x |
∴g(x)在(1,+∞)上递增,又g(3)=1-ln3<0,g(4)=2-ln4>0,
∴g(x)在(1,+∞)上存在唯一的实根x0,且满足x0∈(3,4),
∴当1<x<x0时g(x)<0,即f'(x)<0;当x>x0时g(x)>0,
即f'(x)>0,f(x)min=f(x0)=x0∈(3,4),
故正整数k的最大值为3.
看了 已知函数f(x)=x(1+l...的网友还看了以下:
下列命题正确的是()A.若函数f(x)在x=a处连续,则函数f(x)在x=a的邻域内连续B.若函数 2020-06-12 …
设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是().设函数f(x)和g( 2020-07-08 …
(1)函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=lg(x+1)+x2,当x为实数时 2020-07-20 …
对函数f(x),若f(x)=x,称x为f(x)不动点;若f(f(x))=x,称为的稳定点.A={x 2020-08-01 …
函数f(X)对任意a,b都有f(a+b)=f(a)+f(b)-1,且当X〉0时有f(x)〉1.求证 2020-08-01 …
有关函数单调性与导数的关系对可导函数f(x)的对应导数f'(x)由高三公式可得解析式.若f(x)有 2020-08-01 …
已知函数f(x)=x-1-lnx,g(x)=ex-e-x-ax(e为自然对数的底数).(1)若g( 2020-08-02 …
高中数学奇函数f(x)是定义(0,+oo)上的增函数,且x》0,y》0都有等式f(x/y)=f(x 2020-08-03 …
已知函数f(x)是奇函数:当x>0时,f(x)=x(1-x);则当x<0时,f(x)=()A.f(x 2020-11-01 …
已知函数f(x)对一切实数x、y满足f(0)≠0,f(x+y)=f(x)*f(y),且当x<0时f( 2020-12-27 …