早教吧作业答案频道 -->其他-->
设f(x)是定义域为R的周期函数,且f(x)最小正周期为2,且f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.(1)判定f(x)的奇偶性;(2)试求出函数f(x)在[-1,2]上的表达式.
题目详情
设f(x)是定义域为R的周期函数,且f(x)最小正周期为2,且f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.
(1)判定f(x)的奇偶性;
(2)试求出函数f(x)在[-1,2]上的表达式.
(1)判定f(x)的奇偶性;
(2)试求出函数f(x)在[-1,2]上的表达式.
▼优质解答
答案和解析
(1)∵f(x)是R上的周期函数,最小正周期为2,且f(1+x)=f(1-x),
∴对于任意x∈R,都有f(1+x)=f(1-x)=f(1-x-2)=f(-1-x)=f(-(1+x)),
即f(-x)=f(x);所以,f(x)是R上的偶函数;
(2)∵当-1≤x≤0时,f(x)=-x,
∴当0≤x≤1时,有-1≤-x≤0,
∴f(-x)=-(-x)=x,又f(x)是偶函数,∴f(-x)=f(x),∴f(x)=x;
当1≤x≤2时,有-1≤x-2≤0,且f(x)是最小正周期为 2的函数,
∴f(x)=f(x-2)=-(x-2)=-x+2;
∴f(x)在[-1,2]上的表达式为:f(x)=
;
∴对于任意x∈R,都有f(1+x)=f(1-x)=f(1-x-2)=f(-1-x)=f(-(1+x)),
即f(-x)=f(x);所以,f(x)是R上的偶函数;
(2)∵当-1≤x≤0时,f(x)=-x,
∴当0≤x≤1时,有-1≤-x≤0,
∴f(-x)=-(-x)=x,又f(x)是偶函数,∴f(-x)=f(x),∴f(x)=x;
当1≤x≤2时,有-1≤x-2≤0,且f(x)是最小正周期为 2的函数,
∴f(x)=f(x-2)=-(x-2)=-x+2;
∴f(x)在[-1,2]上的表达式为:f(x)=
|
看了 设f(x)是定义域为R的周期...的网友还看了以下:
f(n)=1+1/2+1/3...+1/n,n=(1,2.),那么f(2^(k+1))-f(2^k 2020-04-27 …
高一数学题已知函数f(x)=x/ax+b(a、b为常数,且a≠0)满足f(2)=1,f(x)=x有 2020-05-22 …
求三道函数题目.职高难度.1、已知函数f(x)=ax+c,f(1)=1,f(2)=4.求a与c的值 2020-06-26 …
诺f(x)在(0,+∞)上是减函数,则f(a^2-a+1)与f(4/3)的大小关系是A.F(a^2 2020-06-29 …
N个一样的球,放到M个有编号的箱子里,有多少种放法?举例N=3,M=2,有4种方法:3,0,;2, 2020-07-14 …
已知函数f(x)=根号3sinxcosx-(cos^2x)+1/2(1)求函数f(已知函数f(x) 2020-07-27 …
关于高一函数的换元法已知f(x-1)=x²-2x,求f(x)老师给的解题过程:设t=x-1∵x∈R 2020-08-01 …
已知f(n)=1+1/2+1/3+...+1/n用数学归纳法证明f(2^n)>n/2时,f(2^( 2020-08-01 …
f(x)=x^2-x∫(0,2)f(x)dx+2∫(0,1)f(x)dx,求f(x)那个设常数a= 2020-08-02 …
一个关于赋值法的问题f(0)=1,而且对于任意实数x,y总有f(x+y/2)=f(x)+y(2x+y 2020-12-31 …