早教吧作业答案频道 -->其他-->
设f(x)是定义域为R的周期函数,且f(x)最小正周期为2,且f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.(1)判定f(x)的奇偶性;(2)试求出函数f(x)在[-1,2]上的表达式.
题目详情
设f(x)是定义域为R的周期函数,且f(x)最小正周期为2,且f(1+x)=f(1-x),当-1≤x≤0时,f(x)=-x.
(1)判定f(x)的奇偶性;
(2)试求出函数f(x)在[-1,2]上的表达式.
(1)判定f(x)的奇偶性;
(2)试求出函数f(x)在[-1,2]上的表达式.
▼优质解答
答案和解析
(1)∵f(x)是R上的周期函数,最小正周期为2,且f(1+x)=f(1-x),
∴对于任意x∈R,都有f(1+x)=f(1-x)=f(1-x-2)=f(-1-x)=f(-(1+x)),
即f(-x)=f(x);所以,f(x)是R上的偶函数;
(2)∵当-1≤x≤0时,f(x)=-x,
∴当0≤x≤1时,有-1≤-x≤0,
∴f(-x)=-(-x)=x,又f(x)是偶函数,∴f(-x)=f(x),∴f(x)=x;
当1≤x≤2时,有-1≤x-2≤0,且f(x)是最小正周期为 2的函数,
∴f(x)=f(x-2)=-(x-2)=-x+2;
∴f(x)在[-1,2]上的表达式为:f(x)=
;
∴对于任意x∈R,都有f(1+x)=f(1-x)=f(1-x-2)=f(-1-x)=f(-(1+x)),
即f(-x)=f(x);所以,f(x)是R上的偶函数;
(2)∵当-1≤x≤0时,f(x)=-x,
∴当0≤x≤1时,有-1≤-x≤0,
∴f(-x)=-(-x)=x,又f(x)是偶函数,∴f(-x)=f(x),∴f(x)=x;
当1≤x≤2时,有-1≤x-2≤0,且f(x)是最小正周期为 2的函数,
∴f(x)=f(x-2)=-(x-2)=-x+2;
∴f(x)在[-1,2]上的表达式为:f(x)=
|
看了 设f(x)是定义域为R的周期...的网友还看了以下:
设f(x)=alog22x+blog4x2+1,(a,b为常数).当x>0时,F(x)=f(x), 2020-05-13 …
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a值.∵f(x)=e^x/a+a/e^ 2020-05-17 …
用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x}.用[ 2020-06-04 …
若函数f(x)满足f(x+y)=f(x)+f(y)(x,y属于R),则下列各式不恒成立的是A.若函 2020-06-12 …
已知函数f(x)=sin(2wx-π/6)+1(w属于R,x属于R)的最小正周期为π,且图像关于x 2020-06-27 …
已知函数fx=ax^2+bx+c(a>0,b∈R,c∈R)已知函数f(x)=ax^2+bx+c(a 2020-07-26 …
已知函数f(x)=2|x-2|+ax(x∈R)有最小值.(1)求实常数a的取值范围;(2)设g(x 2020-07-27 …
若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=f(x)x在I上是减函数,则称y=f 2020-08-01 …
若函数f(x)是定义域D内的某个区间I上的增函数,且F(x)=f(x)x在I上是减函数,则称y=f( 2020-11-27 …
已知函数f(x)=x−2ax+1(a>1,x∈R,x≠−1a);(1)试问:该函数的图象上是否存在不 2020-12-31 …