早教吧作业答案频道 -->其他-->
设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.(Ⅰ)求k值;(Ⅱ)若f(1)<0,求使不等式f(x2+tx)+f(4-x)<0恒成立的实数t的取值范围;(Ⅲ)若f(1)=32,且g(x)=a2x+
题目详情
设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(Ⅰ)求k值;
(Ⅱ)若f(1)<0,求使不等式f(x2+tx)+f(4-x)<0恒成立的实数t的取值范围;
(Ⅲ)若f(1)=
,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求实数m的值.
(Ⅰ)求k值;
(Ⅱ)若f(1)<0,求使不等式f(x2+tx)+f(4-x)<0恒成立的实数t的取值范围;
(Ⅲ)若f(1)=
3 |
2 |
▼优质解答
答案和解析
(Ⅰ)∵函数f(x)是定义域为R的奇函数,∴f(0)=0,
∴1-(k-1)=0,∴k=2,
经检验知:k=2满足题意;
(Ⅱ)f(x)=ax-a-x(a>0且a≠1),
∵f(1)<0,∴a−
<0,
又a>0,且a≠1,∴0<a<1,
∵ax单调递减,a-x单调递增,故函数f(x)在R上单调递减.
不等式化为f(x2+tx)<f(x-4),
∴x2+tx>x-4,即x2+(t-1)x+4>0恒成立,
∴△=(t-1)2-16<0,解得-3<t<5.
(Ⅲ)∵f(1)=
,
∴a−
=
,即2a2-3a-2=0,
∴a=2或a=−
(舍去).
∴g(x)=a2x+a-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2.
令t=f(x)=2x-2-x,
由(Ⅰ)可知f(x)=2x-2-x为增函数,
∵x≥1,∴t≥f(1)=
,
令h(t)=t2−2m+2=(t−m)2+2−m2(t≥
),
若m≥
,当t=m时,h(t)min=2−m2=−2,∴m=2;
若m<
,当t=
时,h(t)min=
−3m=−2,解得m=
>
,故舍去.
综上可知m=2.
∴1-(k-1)=0,∴k=2,
经检验知:k=2满足题意;
(Ⅱ)f(x)=ax-a-x(a>0且a≠1),
∵f(1)<0,∴a−
1 |
a |
又a>0,且a≠1,∴0<a<1,
∵ax单调递减,a-x单调递增,故函数f(x)在R上单调递减.
不等式化为f(x2+tx)<f(x-4),
∴x2+tx>x-4,即x2+(t-1)x+4>0恒成立,
∴△=(t-1)2-16<0,解得-3<t<5.
(Ⅲ)∵f(1)=
3 |
2 |
∴a−
1 |
a |
3 |
2 |
∴a=2或a=−
1 |
2 |
∴g(x)=a2x+a-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2.
令t=f(x)=2x-2-x,
由(Ⅰ)可知f(x)=2x-2-x为增函数,
∵x≥1,∴t≥f(1)=
3 |
2 |
令h(t)=t2−2m+2=(t−m)2+2−m2(t≥
3 |
2 |
若m≥
3 |
2 |
若m<
3 |
2 |
3 |
2 |
17 |
4 |
25 |
12 |
3 |
2 |
综上可知m=2.
看了 设函数f(x)=ax-(k-...的网友还看了以下:
已知直线l:y=kx1与圆c:x方y方-4x-6y12=0.相交于m.n两点.求k取值范围已知直线 2020-05-13 …
已知函数f(x)=x^2-((k+1)^2)x+1,若存在x1∈[k,k+1],x2∈[k+2,k 2020-05-17 …
已知函数F(x)=e^x-kx.若k>0且对任意的x属于R,f(|x|)>0恒成立,求k取值范围 2020-05-21 …
f(x)=x^2-2kx+k+1在[k,+∞)上为闭函数,求k取值范围x^2-2kx+k+1=xx 2020-06-11 …
若函数y=fx对任意x,y属于R,恒有f(x+y)=f(x)+f(y).1如果x大于0时,f(x) 2020-06-11 …
y=kx+2x平方-y平方=1求k取值范围(1)相离(2)相切(3)相交只在左y=kx+2x平方- 2020-07-26 …
定义域R上的函数fx=括号-2的x次方+1括号除以括号二的x次方+1括号任意t属于全体实数,不等式 2020-08-01 …
解方程组,求K取值范围方程组X-Y=2K,X+3Y=1-5K的解X,Y的和为负数求K的取值范围 2020-10-31 …
设f(x)=xe−2+x2,g(x)=exx,对∀x1,x2∈R+,有f(x1)k≤g(x2)k+1 2020-12-22 …
中学数学题y=KX与Y=KX+B交与第三象限,求K取值范围.Y=KX+B与Y=-2X+5平行,且过( 2021-01-11 …