早教吧作业答案频道 -->其他-->
设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.(Ⅰ)求k值;(Ⅱ)若f(1)<0,求使不等式f(x2+tx)+f(4-x)<0恒成立的实数t的取值范围;(Ⅲ)若f(1)=32,且g(x)=a2x+
题目详情
设函数f(x)=ax-(k-1)a-x(a>0且a≠1)是定义域为R的奇函数.
(Ⅰ)求k值;
(Ⅱ)若f(1)<0,求使不等式f(x2+tx)+f(4-x)<0恒成立的实数t的取值范围;
(Ⅲ)若f(1)=
,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求实数m的值.
(Ⅰ)求k值;
(Ⅱ)若f(1)<0,求使不等式f(x2+tx)+f(4-x)<0恒成立的实数t的取值范围;
(Ⅲ)若f(1)=
3 |
2 |
▼优质解答
答案和解析
(Ⅰ)∵函数f(x)是定义域为R的奇函数,∴f(0)=0,
∴1-(k-1)=0,∴k=2,
经检验知:k=2满足题意;
(Ⅱ)f(x)=ax-a-x(a>0且a≠1),
∵f(1)<0,∴a−
<0,
又a>0,且a≠1,∴0<a<1,
∵ax单调递减,a-x单调递增,故函数f(x)在R上单调递减.
不等式化为f(x2+tx)<f(x-4),
∴x2+tx>x-4,即x2+(t-1)x+4>0恒成立,
∴△=(t-1)2-16<0,解得-3<t<5.
(Ⅲ)∵f(1)=
,
∴a−
=
,即2a2-3a-2=0,
∴a=2或a=−
(舍去).
∴g(x)=a2x+a-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2.
令t=f(x)=2x-2-x,
由(Ⅰ)可知f(x)=2x-2-x为增函数,
∵x≥1,∴t≥f(1)=
,
令h(t)=t2−2m+2=(t−m)2+2−m2(t≥
),
若m≥
,当t=m时,h(t)min=2−m2=−2,∴m=2;
若m<
,当t=
时,h(t)min=
−3m=−2,解得m=
>
,故舍去.
综上可知m=2.
∴1-(k-1)=0,∴k=2,
经检验知:k=2满足题意;
(Ⅱ)f(x)=ax-a-x(a>0且a≠1),
∵f(1)<0,∴a−
1 |
a |
又a>0,且a≠1,∴0<a<1,
∵ax单调递减,a-x单调递增,故函数f(x)在R上单调递减.
不等式化为f(x2+tx)<f(x-4),
∴x2+tx>x-4,即x2+(t-1)x+4>0恒成立,
∴△=(t-1)2-16<0,解得-3<t<5.
(Ⅲ)∵f(1)=
3 |
2 |
∴a−
1 |
a |
3 |
2 |
∴a=2或a=−
1 |
2 |
∴g(x)=a2x+a-2x-2m(2x-2-x)=(2x-2-x)2-2m(2x-2-x)+2.
令t=f(x)=2x-2-x,
由(Ⅰ)可知f(x)=2x-2-x为增函数,
∵x≥1,∴t≥f(1)=
3 |
2 |
令h(t)=t2−2m+2=(t−m)2+2−m2(t≥
3 |
2 |
若m≥
3 |
2 |
若m<
3 |
2 |
3 |
2 |
17 |
4 |
25 |
12 |
3 |
2 |
综上可知m=2.
看了 设函数f(x)=ax-(k-...的网友还看了以下:
已知与为两个不共线的单位向量,若向量+与向量k-垂直,则实数k=. 2020-04-08 …
若方程log3x+x=3的解所在的区间是(k,k+1),则整数k=. 2020-05-24 …
若函数f(x)=2x-2-x•k为偶函数,则实数k=. 2020-06-26 …
若函数f(x)=2x-2-x•k为偶函数,则实数k=. 2020-06-26 …
已知定义在[0,+∞)的函数f(x)=x+2(x≥2)x2,(0≤x<2),若f(f(k))=17 2020-07-18 …
若多项式2x-3y+4+3+kx+2ky-k中不含y项,则常数k=. 2020-07-21 …
直线3x-4y+k=0在两坐标轴上的截距之和为2,则实数k=. 2020-07-30 …
关于x的方程x2+4x+k=0有一个根为-2+3i(i为虚数单位),则实数k=. 2020-08-02 …
关于x的方程x2-(k+8)x+8k-1=0有两个整数根,则整数k=. 2020-11-11 …
已知向量a=(1,-1,0),b=(0,k,3).若a与b的夹角为60°,则实数k=. 2021-02-04 …