早教吧作业答案频道 -->其他-->
已知:如图,直线y=−34x+3交x轴于O1,交y轴于O2,⊙O2与x轴相切于O点,交直线O1O2于P点,以O1为圆心O1P为半径的圆交x轴于A、B两点,PB交⊙O2于点F,⊙O1的弦BE=BO,EF的延长线交AB于D,连接PA、
题目详情
已知:如图,直线 y=−
x+3交x轴于O1,交y轴于O2,⊙O2与x轴相切于O点,交直线O1O2于P点,以O1为圆心O1P为半径的圆交x轴于A、B两点,PB交⊙O2于点F,⊙O1的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O2的切线;
(3)EO1的延长线交⊙O1于C点,若G为BC上一动点,以O1G为直径作⊙O3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.

| 3 |
| 4 |
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O2的切线;
(3)EO1的延长线交⊙O1于C点,若G为BC上一动点,以O1G为直径作⊙O3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.

▼优质解答
答案和解析
(1)连接O2F.
∵O2P=O2F,O1P=O1B,
∴∠O2PF=∠O2FP,∠O1PB=∠O1BP,
∴∠O2FP=∠O1BP.
∴O2F∥O1B,
得∠OO2F=90°,
∴∠OPB=
∠OO2F=45°.
又AB为直径,
∴∠APB=90°,
∴∠APO=∠BPO=45°.
(2)延长ED交⊙O1于点H,连接PE.
∵BO为切线,
∴BO2=BF•BP.
又∵BE=BO,
∴BE2=BF•BP.
而∠PBE=∠EBF,
∴△PBE∽△EBF,
∴∠BEF=∠BPE,
∴BE=BH,有AB⊥ED.
又由(1)知O2F∥O1B,
∴O2F⊥DE,
∴EF为⊙O2的切线.
(3)MN的长度不变.
过N作⊙O3的直径NK,连接MK.则∠K=∠MO1N=∠EO1D,
且∠NMK=∠EDO1=90°,
又∵NK=O1E,
∴△NKM≌△EDO1,
∴MN=ED.
而OO1=4,OO2=3,
∴O1O2=5,
∴O1A=8.
AB=16,且OD=O2O=3,
∴AD=7,BD=9.
ED2=AD•BD,
∴ED=3
.
故MN的长度不会发生变化,其长度为 3
.
∵O2P=O2F,O1P=O1B,
∴∠O2PF=∠O2FP,∠O1PB=∠O1BP,
∴∠O2FP=∠O1BP.
∴O2F∥O1B,
得∠OO2F=90°,
∴∠OPB=
| 1 |
| 2 |
又AB为直径,
∴∠APB=90°,
∴∠APO=∠BPO=45°.
(2)延长ED交⊙O1于点H,连接PE.∵BO为切线,
∴BO2=BF•BP.
又∵BE=BO,
∴BE2=BF•BP.
而∠PBE=∠EBF,
∴△PBE∽△EBF,
∴∠BEF=∠BPE,
∴BE=BH,有AB⊥ED.
又由(1)知O2F∥O1B,
∴O2F⊥DE,
∴EF为⊙O2的切线.
(3)MN的长度不变.
过N作⊙O3的直径NK,连接MK.则∠K=∠MO1N=∠EO1D,
且∠NMK=∠EDO1=90°,
又∵NK=O1E,
∴△NKM≌△EDO1,
∴MN=ED.
而OO1=4,OO2=3,
∴O1O2=5,
∴O1A=8.
AB=16,且OD=O2O=3,
∴AD=7,BD=9.
ED2=AD•BD,
∴ED=3
| 7 |
故MN的长度不会发生变化,其长度为 3
| 7 |
看了 已知:如图,直线y=−34x...的网友还看了以下:
CAD:三条直线,其中a,b两条直线相交且角度知道但长度不知道;另一条直线c知道长度和角度,怎么确 2020-05-13 …
下列说法中正确的是A延长直线MN到点CB直线A与直线B交于点MC三点决定一条直线D无数条直下列说法 2020-05-17 …
初中数学,在直角坐标系中,直线L:Y=,-2x+4分别交x轴点A,直线Y=X与直线L交于点B初中数 2020-06-06 …
1)已知平面内有4条直线a,b,c和d.直线a,b和c相交于一点.直线b,c和d也相交于一点,试确 2020-06-15 …
如图,直线l1:y=2x+3与y轴交于点B,直线l2交y轴于点A(0,-1),且直线l1与直线l2 2020-07-21 …
如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B, 2020-07-24 …
已知直线a.b是异面直线,直线c.d分别与ab都相交,求直线cd的位置关系()a.可能已知直线a. 2020-08-02 …
两条直线a,b分别和异面直线c,d都相交,则直线a,b的位置关系是()A.一定是异面直线B.一定是 2020-08-02 …
已知,在△ABC中,AB=AC.过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直 2020-11-02 …
(2012•本溪)已知,在△ABC中,AB=AC.过A点的直线a从与边AC重合的位置开始绕点A按顺时 2021-01-12 …