早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知二次函数f(x)=ax2+bx+c(a≠0).若方程f(x)无实根.求证:方程f{f(x)}=x也无实根.

题目详情
已知二次函数f(x)=ax2+bx+c(a≠0).若方程f(x)无实根.求证:方程f{f(x)}=x也无实根.
▼优质解答
答案和解析
题目是不是:已知二次函数f(x)=ax²+bx+c(a≠0),若方程f(x)=x无实根,求证:方程f(f(x))=x也无实根
证明:因为f(x)=ax2+bx+c(a≠0)
方程f(x)=x 即f(x)-x=ax2+(b-1)x+c=0无实根,f(x)-x仍是二次函数,f(x)-x=0仍是二次方程,无实根Δ=<0
若a>0,则函数y=f(x)-x的图象在x轴上方,
∴y>0,即f(x)-x>0恒成立,即:f(x)>x对任意实数x恒成立.
∴对f(x),有f(f(x))>f(x)>x恒成立
∴f(f(x))=x无实根